Đơn giản biểu thức:
3xn-2(xn-2_yn+2)+yn+2(3xn-2_yn-2)
3xn - 2 . (xn+2- yn+2) + yn+2 . (3xn - 2 - yn - 2)
5(3xn+1-yn-1)-3(xn+1+2yn-1)+4(-xn+1+2yn-1)
\(5\left(3x^{n+1}-y^{n-1}\right)-3\left(x^{n+1}+2y^{n-1}\right)+4\left(-x^{n+1}+2y^{n-1}\right)\)
\(=15x^{n+1}-5y^{n-1}-3x^{n+1}-6y^{n-1}-4x^{n+1}+8y^{n-1}\)
\(=8x^{n+1}-3y^{n-1}\)
A.3XnYn-2=1/3xn-5 Yn+2 với n_>2 tim đơn thưc a nới n la so tu nhien
Rút gọn biểu thức N = 2 x n 3 x n + 2 − 1 − 3 x n + 2 2 x n − 1 ta được
A. N = 2 x n + 3 x n + 2
B. N = - 2 x n – 3 x n + 2
C. N = - 2 x n + 3 x n + 2
D. N = - 2 x n + x n + 2
Ta có N = 2 x n ( 3 x n + 2 – 1 ) – 3 x n + 2 ( 2 x n – 1 )
N = 2 x n ( 3 x n + 2 – 1 ) – 3 x n + 2 ( 2 x n – 1 )
= 2 x n .3 x n + 2 − 2 x n .1 − 3 x n + 2 .2 x n − 3 x n + 2 . − 1
= 6 x n + n + 2 – 2 x n – 6 . x n + 2 + n + 3 x n + 2 = 6 x 2 n + 2 – 6 x 2 n + 2 – 2 x n + 3 x n + 2 = – 2 x n + 3 x n + 2
Vậy N = – 2 x n + 3 x n + 2
Đáp án cần chọn là: C
Giá trị của n đế biểu thức A = 3 x n - 1 y 6 z 5 chia hết cho biểu thức B = 1 4 x 5 z n - 1 là:
Rút gọn biểu thức x n ( x n + 1 + y n ) - y n ( x n + y n - 1 ) được kết quả là?
A. x 2 n + 1 - y 2 n - 1
B. x 2 n - y 2 n
C. x 2 n - 1 - y 2 n + 1
D. x n + 1 - y n - 1
so sanh 23xn và 32xn
Ta có 23xn= 8xn
Và 32xn = 9xn
DO 8<9 NÊN 32xn>23xn
Trường hớp 2 cái bằng nhau khi một trong 2 cái x hoặc n =0
Hai số 3xn+4 và n+1 (n thuộc N) là 2 số nguyên tố cùng nhau
Xét n là số nguyên dương thỏa mãn điều kiện C n 1 + 3 C n 2 = 145 . Số hạng không chứa x trong khai triển của biểu thức x 4 - 3 x n , x ≠ 0 bằng
A. 295245
B. 59049
C. – 59049
D. – 295245
Cho n là số nguyên dương thỏa mãn: A n 2 = C n 2 + C n 1 + 4 n + 6. Hệ số của số hạng chứa x 9 của khai triển biểu thức P x = x 2 + 3 x n bằng:
A. 18564
B. 64152
C. 192456
D. 194265