Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6


Những câu hỏi liên quan
NG
Xem chi tiết
NB
23 tháng 7 2024 lúc 20:38

Bạn chứng minh đi

Bình luận (0)
TC
Xem chi tiết

 Bởi vì nếu vẽ bất cứ một đường chéo nào trên tứ giác thì đều chia tứ giác thành hai tam giác. Mà tổng các góc trong 1 tam giác bằng 180 độ suy ra tổng các góc trong 1 tứ giác bằng 180. 2=360 độ

Bình luận (0)
BM
24 tháng 8 2018 lúc 20:38

Vì Tổng các góc của 1 hình tam giác luôn bằng 180 độ (chứng minh bởi Pi-ta-gô) mà khi1 hình tứ giác chia đôi bằng cách nối từ điểm này sang điểm kia,ta được 2 hình tam giác.180 độ+180 độ=360 độ.

Bình luận (0)
VH
24 tháng 8 2018 lúc 20:40

có ai chơi BCS chưa

Bình luận (0)
NN
Xem chi tiết
AN
Xem chi tiết
NT
22 tháng 3 2021 lúc 20:24

a) Xét (O) có 

ΔACD nội tiếp đường tròn(A,C,D\(\in\)(O))

AD là đường kính(gt)

Do đó: ΔACD vuông tại C(Định lí)

Suy ra: AC\(\perp\)CD tại C

hay \(EC\perp CD\) tại C

Xét tứ giác ECDF có 

\(\widehat{EFD}\) và \(\widehat{ECD}\) là hai góc đối

\(\widehat{EFD}+\widehat{ECD}=180^0\left(90^0+90^0=180^0\right)\)

Do đó: ECDF là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)

Bình luận (0)
TN
Xem chi tiết
AK
7 tháng 9 2021 lúc 20:32

Gọi A^1, B^1, C^1 là 3 góc trong của tam giác ABC. A^2, B^2,C^2 là 3 góc ngoài của tam giác ABC.

Ta có: A^1 + A^2 = 180* B^1 + B^2 = 180* C^1 + C^2 = 180*

---------------------

Cộng vế theo vế được: A^1 +B^1 +C^1 +A^2 +B^2 +C^2 = 3.180* mà A^1 +B^1 +C^1 = 180* (tổng 3 góc trong của tam giác)

=> A^2 +B^2 +C^2 = 3.180* - 180* = 2.180* = 360* 

Bình luận (0)
 Khách vãng lai đã xóa
JJ
Xem chi tiết
NN
9 tháng 10 2018 lúc 20:05

Giả sử tứ giác đó là ABCE, các điểm M,N,P,Q ,E,F lần lượt là trung điểm của các đoạn : AB, BC,CD, DA ,BD và AC 
Ta chứng minh được EMFP, QENF, MNPQ là hình bình hành ( cái này chỉ cần sử dụng đường trung bình là được )
từ đó suy ra MP, QN, EF đồng qui tại trung điểm G của EF ( vì 3 hình bình hành trên đồng tâm )

Bình luận (0)
VA
Xem chi tiết
TL
Xem chi tiết
NQ
Xem chi tiết
NH
15 tháng 7 2023 lúc 21:54

Bài 1: loading...

Gọi E là giao điểm của hai đường chéo AC và BD 

Xét tam giác AEB ta có: AE + BE > AB (trong một tam giác tổng hai cạnh luôn lớn hơn cạnh còn lại)

Xét tam giác DEC ta có: DE + CE > DC (trong một tam giác tổng hai cạnh luôn lớn hơn cạnh còn lại)

Cộng vế với vế ta có: AE + BE + DE + CE > AB + DC 

                                  (AE + CE) + (BE + DE) > AB + DC

                                     AC + BD > AB + DC 

Tương tự ta có AC + BD > AD + BC 

Kết luận: Trong một tứ giác tổng hai đường chéo luôn lớn hơn tổng hai cạnh đối.

Nửa chu vi của tứ giác ABCD là: \(\dfrac{AB+BC+CD+DA}{2}\)

Theo chứng minh trên ta có:

 \(\dfrac{AB+BC+CD+DA}{2}\)\(\dfrac{\left(AB+CD\right)\times2}{2}\) = AB + CD (1)

Vì trong một tam giác tổng hai cạnh bao giờ cũng lớn hơn cạnh còn lại nên ta có:

AB + AD > BD 

AB + BC > AC

BC + CD > BD 

CD + AD > AC 

Cộng vế với vế ta có:

(AB + BC + CD + DA)\(\times\)2 > (BD + AC ) \(\times\) 2

⇒AB + BC + CD + DA > BD + AC  (2)

Kết hợp (1) và (2) ta có:

Tổng hai đường chéo của tứ giác lớn hơn nửa chu vi của tứ giác nhưng nhỏ hơn chu vi của tứ giác

 

 

 

Bình luận (0)
NH
15 tháng 7 2023 lúc 21:58

Bài : 2 Góc C = 1800 - 600 = 1200

          Tổng bốn góc của tứ giác là 3600

           Ta có: Góc B của tứ giác ABCD là:

              3600 - (700 + 800 + 1200) = 900

Câu b chứng minh như bài 1

Bình luận (0)
GH
18 tháng 7 2023 lúc 9:15

Bài 1:

a) Sử dụng tính chất tổng hai cạnh trong một tam giác thì lớn hơn cạnh còn lại cho các tam giác OAB, OBC,OCD và ODA.

b) Chứng minh tổng hai đường chéo lớn hơn nửa chu vi tứ giác sử dụng kết quả của a).

Chứng minh tổng hai đường chéo nhỏ hơn chu vi tứ giác sử dụng tính chất tổng hai cạnh trong một tam giác thì lớn hơn cạnh còn lại cho các tam giác ABC, ADC, ABD và CBD

 

Bài 3:

Tứ giác ABCD có góc C + góc D = 90 độ . Chứng minh rằng AC^2 + BD^2 = AB^2 + CD^2 (ảnh 1)

Gọi O là giao điểm AD và BC.

Ta có �^+�⏜=900 nên �^=900

Áp dụng định lí Py – ta – go,

Ta có 

��2=��2+��2.

��2=��2+��2

Nên 

Bình luận (0)