Cho hcn ABCD có AB=12cm; BC=5cm. Gọi H là hình chiếu của A trên BD, tia AH cắt CD tại K
a) Cm tam giác ABD đồng dạng với tam giác DAK
b) Tính độ dài DK
Cho HCN ABCD có AB = 16cm, AC = 12cm. Vẽ đường cao AH của Tam Giác ABD Mong đc trả lời
Cho HCN ABCD có AB=12cm, BC=5cm. Gọi H là hình chiếu vuông góc của B trên AC. Tính AC, HA, HC
Xét tam giác ABC vuông tại B ta có:
\(AB^2+BC^2=AC^2\)
\(\Leftrightarrow12^2+5^2=AC^2\)
\(\Leftrightarrow AC^2=169\)
\(\Leftrightarrow AC=13cm\)
Xét tam giác ABC vuông tại H, đường cao BH:
Áp dụng hệ thức lượng trong tam giác vuông ta có:
\(AB^2=AH.AC\)
\(\Leftrightarrow12^2=AH.13\)
\(\Leftrightarrow144=AH.13\)
\(\Leftrightarrow AH=\dfrac{144}{13}cm\)
\(HC=AC-AH\)
\(\Leftrightarrow HC=13-\dfrac{144}{13}\)
\(\Leftrightarrow HC=\dfrac{25}{13}cm\)
Bài 1 : Cho hình thang ABCD có độ dài đáy AB bằng 5cm, CD 15cm, đường chéo DB 12cm, AC 16cm. Từ A kẻ đường thẳng song song với BD cắt đường thẳng CD tại E
a. Cm tam giác AEC vuông
b. Tính diện tích hình thang ABCD
Bài 2 : Cho hình chữ nhật ABCD. Qua A kẻ đường thẳng vuông góc đường chéo BD tại H. Biết rằng AB bằng 20cm, AH bằng 12cm. Tính chu vi HCN ABCD
Cho HCN ABCD có chiều dài là 12cm chiều rộng là 8cm. Diện tích HTG ABC là :
Diện tích Hình chữ nhật ABCD là
12 x 8 = 96 (cm2)
Diện tích Hình tam giác ABC là
96/2 = 48 (cm2)
Đáp số. 48 (cm2)
Cho HCN ABCD có AB = 5cm, BC = 12cm. Vẽ BH vuông góc vs AC tại H và kéo dài cắt AD tại K.
a) Giải ∆ABC
b) Đường phân giác của góc ABC cắt AC tại M. Tính BM.
c) Chứng minh: AH × AC = BK × BH.
a: Xét ΔABC vuông tại B có \(AC^2=BA^2+BC^2\)
=>\(AC^2=5^2+12^2=169\)
=>AC=13(cm)
Xét ΔABC vuông tại B có \(sinACB=\dfrac{AB}{AC}=\dfrac{5}{13}\)
=>\(\widehat{ACB}\simeq23^0\)
\(\Leftrightarrow\widehat{BAC}=90^0-\widehat{ACB}=67^0\)
b: Xét ΔBAC có BM là phân giác
nên \(BM=\dfrac{2\cdot BA\cdot BC}{BA+BC}\cdot cos\left(\dfrac{\widehat{ABC}}{2}\right)\)
\(=\dfrac{2\cdot5\cdot12}{5+12}\cdot\dfrac{\sqrt{2}}{2}=\dfrac{60\sqrt{2}}{17}\left(cm\right)\)
c: Xét ΔABK vuông tại A có AH là đường cao
nên \(BH\cdot BK=BA^2\left(1\right)\)
Xét ΔABC vuông tại B có BH là đường cao
nên \(AH\cdot AC=AB^2\left(2\right)\)
Từ (1) và (2) suy ra \(BH\cdot BK=AH\cdot AC\)
Mai mình đi học rồi giúp với, mình hứa sẽ tick
Cho hình chứ nhật ABCD có chiều dài= 12cm và diện tích bằng diện tich tam giác có đáy 18cm, chiều cao 12cm
a) Tính chu vi và diện tích HCN ABCD
b) Trên AB lấy trung điểm M. Trên BC lấy trung điểm N. Nối DN với CM cắt nhau tại O. Tính diện tích tứ giác MBNO
Cho tứ giác ABCD có: AB=5cm; AB+BC=12cm; BC+CD=12cm; CD+AD=12cm. CM: tứ giác ABCD là hình bình hành
helpp
AB = 5cm
=> BC = 12 - 5 = 7cm
=> CD = 12 - 7 = 5cm
=> AD = 12 - 5 = 7cm
Vì AB = CD, BC = AD, mà AB đối CD, BC đối AD
=> Tứ giác ABCD là hbh
Cho HCN ABCD có AB= 12cm, BC= 9cm. Gọi H là chân đường vuông góc kẻ từ A xuống BD. CMR:
a, tam giác AHB đồng dạng với tam giác BCD
b,tính AH
c, Tính diện tích tam giác AHB
Cho hcn ABCD có AB=18cm, AD=12cm. Gọi M là trung điểm của AB, tia DM cắt AC tại N và cắt BC tại P
a) Tính độ dài đoạn DM, DN, DP
b, Không sử dụng kết quả tính được ở câu a, hãy cm DN2=NM.NP
Mn lm nhanh mk k cho, mk đg cần gấp ạ