cho B=(x-y).(y-z).(z-x). Trong đó x,y,z là số chính phương. Chứng minh rằng B chia hết cho 12
Cho 3 số chính phương x, y, z
Chứng minh rằng:
(x-y) (y-z) (z-x) chia hết cho 12
cho x, y, z là 3 số chính phương . chứng minh (x- y).(x-z).(y-z) chia hết cho 12
#)Giải :
Áp dụng :
Số chính phương chia 3 dư 0 hoặc 1
Số chính phương chia 4 dư 0 hoặc 1
Đặt A = ( x - y )( x - z )( y - z)
Vì một số chính phương chia 3, 4 đều dư 0 hoặc 1
- Vì x, y, z chia 3 dư 0 hoặc 1
=> Có ít nhất 2 số có cùng số dư khi chia cho 3
=> Hiệu của chúng chia hết cho 3
=> x - y hoặc y - z hoặc z - x chia hết cho 3
=> A chia hết cho 3 ( 1 )
- Vì x, y, z chia 4 dư 0 hoặc 1
=> Có ít nhất hai số có cùng số dư khi chia cho 4
=> Hiệu của chúng chia hết cho 4
=> x - y hoặc y - z hoặc z - x chia hết cho 4
=> A chia hết cho 4 ( 2 )
Từ ( 1 ) và ( 2 ) kết hợp với ƯCLN ( 3, 4 ) = 1 => A chia hết cho 3 x 4 => A chia hết cho 12
#~Will~be~Pens~#
Ai giải nhanh nhất, đúng nhất cho 5 tick!
Đề bài:Cho 3 số chính phương x,y,z. Chứng minh rằng (x-y)(y-z)(z-x) chia hết cho 12.
Cho a,b,c là 3 số chính phương
CMR:(x-y)(y-z)(z-x) chia hết cho 12
Áp dụng:
Số chính phương chia 3 dư 0 hoặc 1.
Số chính phương chia 4 dư 0 hoặc 1.
Đặt A = (x - y)(y - z)(z - x)
Vì 1 số chính phương chia 3, chia 4 đều dư 0 hoặc 1
- Vì x, y, z chia 3 dư 0 hoặc 1
=> Có ít nhất 2 số có cùng số dư khi chia cho 3
=> Hiệu của chúng chia hết cho 3
=> x - y hoặc y - z hoặc z - x chia hết cho 3
=> A chia hết cho 3 (1)
- Vì x, y, z chia 4 dư 0 hoặc 1
=> Có ít nhất 2 số có cùng số dư khi chia cho 4
=> Hiệu của chúng chia hết cho 4
=> x - y hoặc y - z hoặc z - x chia hết cho 4
=> A chia hết cho 4 (2)
Tư (1) và (2) kết hợp với ƯCLN (3,4) = 1 => A chia hết cho 3 x 4 => A chia hết cho 12
Cho x,y,z là các số chính phương thỏa mãn : x2 +y2=z2.Chứng minh rằng xyz chia hết cho 60
Cho 3 số chính phương x, y, z. CMR: (x - y)(y - z)(z - x) chia hết cho 12
bài này bạn giải rồi mà
Số chính phương chia 3 dư 0 hoặc 1.
Số chính phương chia 4 dư 0 hoặc 1.
Đặt A = (x - y)(y - z)(z - x)
Vì 1 số chính phương chia 3, chia 4 đều dư 0 hoặc 1
- Vì x, y, z chia 3 dư 0 hoặc 1
=> Có ít nhất 2 số có cùng số dư khi chia cho 3
=> Hiệu của chúng chia hết cho 3
=> x - y hoặc y - z hoặc z - x chia hết cho 3
=> A chia hết cho 3 (1)
- Vì x, y, z chia 4 dư 0 hoặc 1
=> Có ít nhất 2 số có cùng số dư khi chia cho 4
=> Hiệu của chúng chia hết cho 4
=> x - y hoặc y - z hoặc z - x chia hết cho 4
=> A chia hết cho 4 (2)
Tư (1) và (2) kết hợp với ƯCLN (3,4) = 1 => A chia hết cho 3 x 4 => A chia hết cho 12
Cậu lấy trong quyển Toán nâng cao nào vậy ?
Cho 3 số chính phương x, y, z. CMR: (x - y)(y - z)(z - x) chia hết cho 12
Ap dụng:
Số chính phương chia 3 dư 0 hoặc 1.
Số chính phương chia 4 dư 0 hoặc 1.
Đặt A = (x - y)(y - z)(z - x)
Vì 1 số chính phương chia 3, chia 4 đều dư 0 hoặc 1
- Vì x, y, z chia 3 dư 0 hoặc 1
=> Có ít nhất 2 số có cùng số dư khi chia cho 3
=> Hiệu của chúng chia hết cho 3
=> x - y hoặc y - z hoặc z - x chia hết cho 3
=> A chia hết cho 3 (1)
- Vì x, y, z chia 4 dư 0 hoặc 1
=> Có ít nhất 2 số có cùng số dư khi chia cho 4
=> Hiệu của chúng chia hết cho 4
=> x - y hoặc y - z hoặc z - x chia hết cho 4
=> A chia hết cho 4 (2)
Tư (1) và (2) kết hợp với ƯCLN (3,4) = 1 => A chia hết cho 3 x 4 => A chia hết cho 12
Hình như tớ nhớ ffffffg hỏi một câu tương tự và bạn trần như trả lời xong rồi k đúng .
chứng minh rằng ; B= 4x(x+y)(x+y+z)(x+z) + (y^2)(z^2) là một số chính phương vơi x,y,z là các số nguyên
B= 4(x2 + xy + xz)(x2 + xy + xz + yz) + y2z2
đặt x2 + xy + xz = m , ta có
B = 4m(m + yz) + y2z2 = 4m2 + 4myz + y2z2
B = (2m + yz)2 = (2x2 + 2xy + 2xz + yx)2
x,y,z la cac so nguyen thif B la 1 so chinh phuong
Cho x,y,z thuộc N*. Chứng minh rằng (x-y)(y-z)(z-x) chia hết cho 12.