Do \(x,y,z\) là số chính phương nên chỉ có thể chia 3 và 4 dư 0 hoặc dư 1.
Theo nguyên lí Dirichlet, tồn tại 2 số có cùng số dư khi chia cho 3 và 4. Không mất tính tổng quát, giả sử là \(x,y\)
\(\Rightarrow\left\{{}\begin{matrix}x-y⋮3\\x-y⋮4\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}B⋮3\\B⋮4\end{matrix}\right.\) \(\Rightarrow B⋮12\), đpcm