Tìm số nguyên x,y biết \(2x^2-2xy+x-y+15=0\)
Tìm x,y nguyên biết 2x2-2xy+x+y+15=0
Thank you
2x^2-2xy+x+y+15=0
<=>x(2x+1)+y(2x+1)=-15
<=>(x+y)(2x+1)=-15
bạn tự phân tích tiếp nhé
học tốt
tìm số nguyên x,y biết
2xy-6=4x-y
x-2xy+y=0
x^2*y+2x^2+y=3
a)ta có :2xy-6=4x-y => 2xy-6-4x+y=0 => 2*(2xy-6-4x+y)=2*0 =>4xy-12-8x+2y=0 => 2x2y-4-8-8x+2y=0 => 2x2y-4-8x+2y=8 =>(2x2y+2y)-(8x+4)=8 =>2y(2x+1)-4(2x+1)=8 => (2y-4)(2x+1)=8 Ta có bảng sau :
2y-4 | 1 | 8 | 2 | 4 | -1 | -8 | -2 | -4 |
2x+1 | 8 | 1 | 4 | 2 | -8 | -1 | -4 | -2 |
y(yϵ\(ℤ\)) | 5/2(loại ) | 6(thỏa mãn) | 3(loại) | 4(loại) | 3/2( loại) | -2(thỏa mãn) | 1( loại) | 0(loại ) |
x(xϵ\(ℤ\)) | 7/2(loại) | 0(thỏa mãn) | 3/2( loại) | 1/2( loại) | -9/2( loại) | -1(thỏa mãn) | -5/2( loại) | -3/2( loại) |
Vậy các cặp nghiệm x,y thỏa mãn là (0;6) và (-1;-2)
c1,tìm x,y số nguyên biết 2xy-x-y=2
c2,tìm đa thức M biết rằng M+(5x^2-2xy)=6x^2+9xy-y^2 tính giá trị của M khi x, y thỏa mãn (2x-5)^2018+(3y+4)^2<0 hoặc =0
tìm x , y nguyên biết : 2x^2 - 2xy +x +y + 2=0
Tìm x, y nguyên biết: 2xy + y + 2x - 2 = 0
2xy + y +2x -2=0
y(2x+1)+(2x+1)-3=0
(2x+1)(y+1)=3
2x+1 và y+1 là Ư(3)=(+_1,+_3)
Lập bảng thì ta tìm ra đc (x,y)=(0,2),(1,0),(-1,-4),(-2,-5)
tìm x, y nguyên biết 2x^2+y^2-2xy-2x-4y=0
Tìm số nguyên x biết
a,3x+3y-2xy=7
b,xy+2x+y+11=0
c,xy+x-y=4
d,2x.(3y-2)+(3y-2)=12
e,3x+4y-xy=15
f,xy+3x-2y=11
g,xy+12=x+y
h,xy-2x-y=-6
i,xy+4x=25+5y
ii,2xy-6y+x=9
iii,xy-x+2y=3
k,2.x^2.y-x^2-2y-2=0
l,x^2.y-x+xy=6
Tìm các số nguyên x,y biết rằng 2xy-y+2x-7=0
help me
\(2xy-y+2x-7=0\)
\(\Leftrightarrow2xy+2x-y-1=6\)
\(\Leftrightarrow2x\left(y+1\right)-\left(y+1\right)=6\)
\(\Leftrightarrow\left(2x-1\right)\left(y+1\right)=6\)
Do \(2x-1\) luôn lẻ với mọi x nguyên nên ta chỉ cần xét các trường hợp \(2x-1\) là ước lẻ của 6
Ta có bảng giá trị sau:
2x-1 | -3 | -1 | 1 | 3 |
y+1 | -2 | -6 | 6 | 2 |
x | -1 | 0 | 1 | 2 |
y | -3 | -7 | 5 | 1 |
Vậy \(\left(x;y\right)=\left(-1;-3\right);\left(0;-7\right);\left(1;5\right);\left(2;1\right)\)
Tìm x,y nguyên biết :
2x2 - 2xy + x + y = 0