Tìm số nguyên x và y sao cho \(\frac{x}{4}-\frac{1}{y}=\frac{1}{2}\)
tìm các số nguyên x,y sao cho \(\frac{x}{4}-\frac{1}{y}=\frac{1}{2}\)
Ta có : \(\dfrac{x}{4}-\dfrac{1}{y}=\dfrac{1}{2}\left(y\ne0\right)\)
\(\Leftrightarrow\dfrac{xy-4}{4y}=\dfrac{1}{2}\)
\(\Leftrightarrow2xy-8=4y\)
\(\Leftrightarrow xy-2y-4=0\)
\(\Leftrightarrow y\left(x-2\right)=4\)
\(\Leftrightarrow x-2=\dfrac{4}{y}\left(1\right)\)
Mà x, y là các số nguyên .
\(\Rightarrow y\inƯ_{\left(4\right)}\)
\(\Rightarrow y\in\left\{1;-1;2;-2;4;-4\right\}\)
- Thay lần lượt y vào ( 1 ) ta được x lần lượt là : \(\left\{6;-2;4;0;3;1\right\}\)
Vậy ...
a)Tìm cặp số x,y nguyên sao cho: \(\frac{x-1}{5}\)=\(\frac{3}{y+4}\)
b)Tìm các số nguyên x sao cho P=\(\frac{x-2}{x+1}\)nguyên
c)Tìm cặp số x,y nguyên sao cho: \(\frac{x}{3}\)- \(\frac{2}{y}\) = \(\frac{1}{6}\)
1. Tìm các số nguyên x sao cho: \(\frac{-7}{12}< \frac{x-1}{4}< \frac{2}{3}\)
2. Tìm các số nguyên x,y thoả mãn:
a) \(\frac{-1}{3}< \frac{x}{36}< \frac{y}{18}< \frac{-1}{4}\)
b)\(\frac{1}{220}< \frac{x}{165}< \frac{y}{132}< \frac{1}{60}\)
1. \(\frac{-7}{12}\)< \(\frac{x-1}{4}\)< \(\frac{2}{3}\)
=> \(\frac{-7}{12}\)< \(\frac{3.\left(x-1\right)}{12}\)< \(\frac{8}{12}\)
=> 3 . ( x - 1 ) thuộc { - 6 ; - 5 ; - 4 ; - 3 ; - 2 ; - 1 ; 0 ; 1 ; 2 ; 3 ; 4 ; 5 ; 6 ; 7}
Lập bảng tính giá trị x , cái này dễ lên bạn tự làm nha
1/ \(-\frac{7}{12}< \frac{x-1}{4}< \frac{2}{3}\)
hay \(\frac{-7}{12}< \frac{3.\left(x-1\right)}{12}< \frac{8}{12}\)
Vậy \(-7< 3.\left(x-1\right)< 8\)
Vậy \(3.\left(x-1\right)\in\left\{-6;-5;-4;...;7\right\}\)
mà \(x\in Z\)nên \(3.\left(x-1\right)⋮3\)
Vậy \(3.\left(x-1\right)\in\left\{-6;-3;0;3;6\right\}\)
hay \(x-1\in\left\{-2;-1;0;1;2\right\}\)
tới đây dễ rồi thì làm nốt nhé, để thời gian làm mấy câu sau!
Tìm các cặp số nguyên dương (x;y) sao cho \(\frac{x-1}{4}-\frac{1}{y+3}=\frac{1}{2}\)
Trả lời
\(\frac{x-1}{4}-\frac{1}{y+3}=\frac{1}{2}\)
\(\Rightarrow\frac{x-1}{4}-\frac{1}{2}=\frac{1}{y+3}\)
\(\Rightarrow\frac{x-1}{4}-\frac{2}{4}=\frac{1}{y+3}\)
\(\Rightarrow\frac{x-1-2}{4}=\frac{1}{y+3}\)
\(\Rightarrow\frac{x-3}{4}=\frac{1}{y+3}\)
\(\Rightarrow\left(x-3\right)\left(y+3\right)=4\)
Vì \(x,y\inℕ\)\(\Rightarrow x-3;y+3\inℕ\)
\(\Rightarrow x-3;y+3\inƯ\left(4\right)=\left\{1;2;4\right\}\)
Ta có bảng giá trị
x-3 | 1 | 2 | 4 |
y+3 | 4 | 2 | 1 |
x | 4 | 5 | 7 |
y | 1 | -1 | -2 |
Đối chiếu điều kiện \(x,y\inℕ\)
Vậy \(\left(x;y\right)\in\left\{\left(4;1\right)\right\}\)
Tìm cặp số nguyên x , y sao cho
a) \(\frac{y}{5}+\frac{1}{10}=\frac{1}{x}\)
b)\(\frac{x}{4}-\frac{1}{2}=\frac{3}{y}\)
a/\(\frac{y}{5}+\frac{1}{10}=\frac{1}{x}\)
\(\frac{y.2}{10}+\frac{1}{10}=\frac{1}{x}\)
\(\frac{y.2+1}{10}=\frac{1}{x}\Leftrightarrow\left(y.2+1\right)x=10\)
Ta có Ư(10)={-1;1;-2;2-5;5-10;10}
Mà y.2+1 là số lẻ nên có bảng sau:
\(y.2+1\) | \(-1\) | \(1\) | \(-5\) | \(5\) |
\(y.2\) | \(-2\) | \(0\) | \(-6\) | \(4\) |
\(y\) | \(-1\) | \(0\) | \(-3\) | \(2\) |
\(x\) | \(-10\) | \(10\) | \(-2\) | \(2\) |
b/\(\frac{x}{4}-\frac{1}{2}=\frac{3}{y}\)
\(\frac{x}{4}-\frac{2}{4}=\frac{3}{y}\)
\(\frac{x-2}{4}=\frac{3}{y}\Leftrightarrow\left(x-2\right)y=12\)
Ta có Ư(12)={-1;1;-2;2-3;3;-4;4;-6;6;-12;12}
Ta có bảng sau:
x-2 | -1 | 1 | -2 | 2 | -3 | 3 | -4 | 4 | -6 | 6 | -12 | 12 |
x | 1 | 3 | 0 | 4 | -1 | 5 | -2 | 6 | -4 | 8 | -10 | 14 |
y | -12 | 12 | -6 | 6 | -4 | 4 | -3 | 3 | -2 | 2 | -1 | 1 |
CHÚC BẠN HỌC TỐT!!!
\(\frac{x}{4}\)-\(\frac{1}{y}\)=\(\frac{1}{2}\)
Tìm hai số hữu tỉ x và y sao cho x -y = x . y = x : y (y\(\ne\)0)ta có : 1/y = x/4 - 1/2 = ( x+2)/4 <=> y = 4/(x - 2)
Để x, y nguyên nên ta có : x-2 ϵ Ư(4) = { -1 , 1 ,-2,2-4,4}
x-2=1=>x=3=>y=4
x-2=-1=>x=1=>y=-4
x-2=-2=>x=0=>y=0
x-2=2=>x=4=>y=2
x-2=-4=>x=-2=>y=-1
x-2=4=>x=6=>y=1
vay cac cap so nguyen( x,y) la :(3,4),(1,-4),(0,0),(4,2),(-2,-1),(6,1)
x4
12
1
tìm các cặp số nguyên x,y sao cho:
a)\(\frac{x}{3}-\frac{4}{y}=\frac{1}{5}\)
b)\(\frac{5}{x-1}-\frac{y-1}{3}=\frac{1}{6}\)
c)\(\frac{x}{2}+\frac{y}{3}=\frac{x+y}{2+3}\)
a) Ta có : \(\frac{x}{3}-\frac{4}{y}=\frac{1}{5}\)
\(\Rightarrow\frac{x}{3}-\frac{1}{5}=\frac{4}{y}\)
\(\Rightarrow\frac{x.5}{15}-\frac{3}{15}=\frac{4}{y}\)
\(\Rightarrow\frac{x.5-3}{15}=\frac{4}{y}\)
\(\Rightarrow\left(x.5-3\right).y=15.4\)
\(\Rightarrow x.5.y-3.5=60\)
\(\Rightarrow xy5-15=60\)
\(\Rightarrow xy5=60+15\)
\(\Rightarrow xy5=75\)
\(\Rightarrow xy=75\div5\)
\(\Rightarrow xy=15\)
\(\Rightarrow xy=1.15=3.5=\left(-15\right)\left(-1\right)=\left(-3\right)\left(-5\right)=\left(-5\right)\left(-3\right)=\left(-1\right)\left(-15\right)=5.3=15.1\)
Do đó x = 1 thì y = 15
x = 3 thì y =5
x = -15 thì y = -1
x = -3 thì y = -5
x = -5 thì y = -3
x = -1 thì y = -15
x = 5 thì y = 3
x = 15 thì y = 1
1)Cho x, y thỏa mãn \(y\left(x+y\right)\ne0\)và\(x^2-xy=2y^2\)Tính \(A=\frac{3x-y}{x+y}\)
2)Tìm a,b sao cho đa thức f(x)=ax+bx2+10x-4 chia hết cho đa thức g(x)=x2+x-2
3)Tìm số nguyên a sao cho a4 + 4 là số nguyên tố
4)Giải pt \(\frac{x}{x^2+4x+4}+\frac{5x}{x^2+4}=-2\)
5)Giải pt\(\frac{x^2+2x+1}{x^2-x+1}-\frac{x^2-2x+1}{x^2+x+1}=\frac{20}{7}\)
6)Cho các số dương x, y, z thỏa mãn x2+y2+z2=1
Cmr\(\frac{x^3}{y+2z}+\frac{y^3}{z+2x}+\frac{z^3}{x+2y}\ge\frac{1}{3}\)
6) Ta có
\(A=\frac{x^3}{y+2z}+\frac{y^3}{z+2x}+\frac{z^3}{x+2y}\)
\(=\frac{x^4}{xy+2xz}+\frac{y^4}{yz+2xy}+\frac{z^4}{zx+2yz}\)
\(\ge\frac{\left(x^2+y^2+z^2\right)^2}{xy+2xz+yz+2xy+zx+2yz}\)
\(\Leftrightarrow A\ge\frac{1}{3\left(xy+yz+zx\right)}\ge\frac{1}{3\left(x^2+y^2+z^2\right)}=\frac{1}{3}\)
Mấy bạn giúp mình làm 4 bài sau đây nha. Nếu bạn nào làm vừa nhanh vừa đúng mình sẽ tặng cho bạn đó 1 LIKE!!!
1. Tìm phân số có giá trị nhỏ nhất khác 0 sao cho khi chia phân số này cho mỗi phân số 9/10,15/22 ta được kết quả là các số nguyên.
2. Tính hợp lí:
\(A=\frac{1}{2}.\frac{1}{7}+\frac{1}{7}.\frac{1}{12}+\frac{1}{12}.\frac{1}{17}+...+\frac{1}{2002}.\frac{1}{2007}\)
3. Cho x,y thuộc tập hợp N sao và
\(A=\frac{x}{x+y}+\frac{y}{y+z}+\frac{z}{x+z}\)
Chứng minh 1<A<2
4. Tìm tập hợp các số nguyên x để:
\(\frac{3x}{5}:\frac{3x^2+6x}{10}\)có giá trị là số nguyên.
http://olm.vn/hỏi-đáp/question/584545.html chờ xí tui thấy cái tên rồi giải cho bài 2
2.
= 1/2.7 + 1/7.12 + 1/12.17 + ... + 1/2002.2007
= 1/2 - 1/7 + 1/7 - 1/12 + 1/12 - 1/17 + ... + 1/2002 - 1/2007
= 1/2 - 1/2007
= 2007/4014 - 2/4014
= 2005/4014
1.
Gọi phân số đó là: \(\frac{a}{b}\)(a,b thuộc N)
Theo bài ra ta có:
\(\frac{a}{b}:\frac{9}{10}=\frac{a}{b}.\frac{10}{9}=\frac{10a}{9b}\)
Để \(\frac{10a}{9b}\) nguyên thì a thuộc B(9) và b thuộc Ư(10) (1)
\(\frac{a}{b}:\frac{15}{22}=\frac{a}{b}.\frac{15}{22}=\frac{15a}{22b}\)
Để \(\frac{15a}{22b}\) nguyên thì a thuộc B(22) b thuộc Ư(15) (2)
\(\frac{a}{b}\) nhỏ nhất =>a nhỏ nhất và b lớn nhất (3)
Từ (1), (2) và (3) => a=BCNN(9;22) và b= ƯCLN(15;10)
=>a= 198 ; b= 5
Vậy phân số cần tìm là: \(\frac{198}{5}\)
2.
\(A=\frac{1}{2}.\frac{1}{7}+\frac{1}{7}.\frac{1}{12}+\frac{1}{12}.\frac{1}{17}+...+\frac{1}{2002}.\frac{1}{2007}\)
\(A=\frac{1}{2.7}+\frac{1}{7.12}+\frac{1}{12.17}+...+\frac{1}{2002.2007}\)
\(5A=\frac{1}{2}-\frac{1}{7}+\frac{1}{7}-\frac{1}{12}+\frac{1}{12}-\frac{1}{17}+...+\frac{1}{2002}-\frac{1}{2007}\)
\(5A=\frac{1}{2}-\frac{1}{2007}\)
\(5A=\frac{2005}{4014}\)
\(A=\frac{2005}{4014}.\frac{1}{5}\)
\(A=\frac{401}{4014}\)
2 bài còn lại mk đang nghĩ
k mk nha