Những câu hỏi liên quan
PN
Xem chi tiết
VT
Xem chi tiết
NG
Xem chi tiết
VT
Xem chi tiết
H24
Xem chi tiết
LL
21 tháng 12 2017 lúc 17:26

\(2\sqrt{3}=\sqrt{4.3}=\sqrt{12}\)

\(3\sqrt{2}=\sqrt{9.2}=\sqrt{18}\)

do đó \(2\sqrt{3}< 3\sqrt{2}\)

Bình luận (0)
MD
26 tháng 12 2017 lúc 19:53

bạn hỏi chán thế bài này dễ mà hay bạn hỏi hộ người khác à

Bình luận (0)
HN
Xem chi tiết
H24
Xem chi tiết
NH
28 tháng 8 2017 lúc 20:59

a) \(\sqrt{2004}-\sqrt{2003}=\frac{1}{\sqrt{2004}+\sqrt{2003}}>\frac{1}{\sqrt{2006}+\sqrt{2005}}=\sqrt{2006}-\sqrt{2005}\)

b) Tương tự.

Bình luận (0)
H24
Xem chi tiết
MD
16 tháng 6 2017 lúc 21:32

Cách 1: Theo casio ta có:

+ \(\sqrt{3}+\sqrt{7}\approx4,378\)

+ \(\sqrt{19}\approx4,36\)

=> \(\sqrt{3}+\sqrt{7}>\sqrt{19}\)

Cách 2: Ta có: \(\left(\sqrt{3}+\sqrt{7}\right)^2=3+7+2.\sqrt{21}=10+\sqrt{84}\)

\(\left(\sqrt{19}\right)^2=19=10+\sqrt{81}\)

\(10+\sqrt{84}>10+\sqrt{81}\)

=> \(\left(\sqrt{3}+\sqrt{7}\right)^2>\left(\sqrt{19}\right)^2\)

=> \(\sqrt{3}+\sqrt{7}>\sqrt{19}\)

Bình luận (5)
DA
17 tháng 6 2017 lúc 11:50

Ta có: \(\left(\sqrt{3}+\sqrt{7}\right)^2=10+2\sqrt{21}>10+2\sqrt{20,25}=10+2\sqrt{\left(4,5\right)^2}=10+2.4,5=10+9=19=\left(\sqrt{19}\right)^2\)

(Vì 21 > 20,25 > 0 => \(\sqrt{21}>\sqrt{20,25}\))

Mà 2 biểu thức so sánh đều dương

=>\(\sqrt{3}+\sqrt{7}>\sqrt{19}\).

Bình luận (0)
GN
Xem chi tiết