Những câu hỏi liên quan
AV
Xem chi tiết
JY
Xem chi tiết
NT
23 tháng 12 2017 lúc 20:53

 A = (4x + 3)/(x² + 1) 

CM bất đẳng thức phụ : (a² + b²)(c² + d²) ≥ (ac + bd)² (1) 

Đây là bất đẳng thức bunhiacopxki , nếu em chưa biết thì anh CM luôn : 

(1) <=> a²c² + a²d² + b²c² + b²d² ≥ a²c² + 2abcd + b²d² 

<=> a²d² - 2.ad.bc + b²c² ≥ 0 

<=> (ad - bc)² ≥ 0 --> luôn đúng --> bđt (1) được CM 

- Dấu " = " xảy ra <=> ad = bc <=> a/c = b/d 

- Áp dụng bđt (1) ta có : (4.x + 3.1)² ≤ (4² + 3²)(x² + 1²) 

<=> (4x + 3)² ≤ 25(x² + 1) 

<=> -5.√(x² + 1) ≤ 4x + 3 ≤ 5.√(x² + 1) 

<=> -5/√(x² + 1) ≤ A = (4x + 3)/(x² + 1) ≤ 5/√(x² + 1) 
 

Bình luận (0)
JY
23 tháng 12 2017 lúc 20:56

mà anh ơi kết quả thầy em cho là -1 <=A<=4

Bình luận (0)
DH
23 tháng 12 2017 lúc 20:58

Giair sai rồi còn gì nữa

Bình luận (0)
VC
Xem chi tiết
OO
28 tháng 7 2018 lúc 16:27

tích mình với

ai tích mình

mình tích lại

thanks

Bình luận (0)
NC
14 tháng 2 2019 lúc 15:05

Tích mình đi mình tích lại

Bình luận (0)
DH
Xem chi tiết
LD
9 tháng 9 2017 lúc 12:58

Ta có : \(P=2x^2-8x+1=2\left(x^2-4x\right)+1=2\left(x^2-4x+4-4\right)+1=2\left(x-2\right)^2-7\)

Vì \(2\left(x-2\right)^2\ge0\forall x\) 

Nên : \(P=2\left(x-2\right)^2-7\ge-7\forall x\in R\)

Vậy \(P_{min}=-7\) khi x = 2

Bình luận (0)
HD
Xem chi tiết
H24
Xem chi tiết
PT
31 tháng 1 2018 lúc 17:40

đặt các biểu thức trên bằng a rồi nhân lên dùng denta

Bình luận (0)
HN
Xem chi tiết
TL
4 tháng 4 2015 lúc 23:18

1) A = 3 - 4x2 - 4x  = - (4x2 + 4x +1) + 4 = - (2x+1)2 + 4 

Vì  - (2x+1)2 \(\le\)0 nên A =  - (2x+1)2 + 4 \(\le\) 4 vậy maxA = 4 khi 2x+1 = 0 => x = -1/2

b) ta có x2 + 6x + 11 = x2 + 2.3x + 9 + 2 = (x+3)2 + 2 \(\ge\) 0 + 4 = 4

=> \(B=\frac{1}{x^2+6x+11}\le\frac{1}{4}\) vậy maxB = 1/4 khi x = -3

2) a) 3x2 - 3x + 1 = 3.(x2 - x) + 1 = 3.(x2 - 2.x\(\frac{1}{2}\) + \(\frac{1}{4}\)) + \(\frac{1}{4}\) = 3.(x - \(\frac{1}{2}\) )2 + \(\frac{1}{4}\) \(\ge\)0 + \(\frac{1}{4}\)\(\frac{1}{4}\)

vậy min(3x2 - 3x + 1) = 1/4 khi x = 1/2

b) Áp dụng bất đẳng thức giá trị tuyệt đối: |a| + |b| \(\ge\) |a - b|. dấu = khi a.b < 0

ta có:  |3x - 3| + |3x - 5| \(\ge\) |3x - 3 - (3x - 5)| = |2| = 2

vậy min = 2 khi (3x - 3)(3x - 5) < 0 hay 1< x <  5/3

Bình luận (0)
TL
Xem chi tiết
OP
27 tháng 7 2018 lúc 8:26

Ukm

It's very hard

l can't do it 

Sorry!

 
Bình luận (0)
DT
Xem chi tiết
H24
3 tháng 4 2020 lúc 17:51

\(D=\frac{4x+3}{x^2+1}\)

Min D : 

\(D=\frac{x^2+4x+4-x^2-1}{x^2+1}\)

\(=\frac{\left(x+2\right)^2-\left(x^2+1\right)}{x^2+1}=\frac{\left(x+2\right)^2}{x^2+1}-1\)

Ta thấy : \(\frac{\left(x+2\right)^2}{x^2+1}\ge0\forall x\)

\(\Rightarrow D\Rightarrow\frac{\left(x+2\right)^2}{x^2+1}-1\ge-1\)

Dấu "=" xảy ra khi \(x+2=0\Leftrightarrow x=-2\)

Max D : 

\(D=\frac{4x+3}{x^2+1}=\frac{-4x^2+4x-1+4x^2+4}{x^2+1}\)

\(=\frac{-\left(2x-1\right)^2+4\left(x^2+1\right)}{x^2+1}\)

\(=\frac{-\left(2x-1\right)^2}{x^2+1}+4\)

Ta thấy : \(\frac{-\left(2x-1\right)^2}{x^2+1}\le0\forall x\)

\(\Rightarrow D=\frac{-\left(2x-1\right)^2}{x^2+1}+4\le4\)

Dấu "=" xảy ra khi \(2x-1=0\Leftrightarrow x=\frac{1}{2}\)

Bình luận (0)
 Khách vãng lai đã xóa