tính:
A= 1.1+2.3+3.4+....+2022.2023
Tính :
S = \(\dfrac{5}{2.3}+\dfrac{5}{3.4}+....+\dfrac{5}{2022.2023}\)
Lời giải:
$S=5(\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{2022.2023})$
$=5(\frac{3-2}{2.3}+\frac{4-3}{3.4}+....+\frac{2023-2022}{2022.2023})$
$=5(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{2022}-\frac{1}{2023})$
$=5(\frac{1}{2}-\frac{1}{2023})=\frac{10105}{4046}$
(x+1/1.2)+(x+1/2.3)+(x+1/3.4)+....+(x+1/2022.2023)=2023x
\(\Rightarrow\left(x+x+...+x\right)+\left(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{2022.2023}\right)=2023x\)
\(\Rightarrow2022x+\left(\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-...-\dfrac{1}{2021}+\dfrac{1}{2021}-\dfrac{1}{2022}+\dfrac{1}{2022}-\dfrac{1}{2023}\right)=2023x\)\(\Rightarrow2022x-2023x=-\left(1-\dfrac{1}{2023}\right)\)
\(\Rightarrow-x=-\dfrac{2022}{2023}\Leftrightarrow x=\dfrac{2022}{2023}\)
(x + 1/1.2) + (x + 1/2.3) + (x + 1/3.4) + ... + (x + 1/2022.2023) = 2023x
x + x + x + ... + x + 1/1.2 + 1/2.3 + ... + 1/2022.2023 = 2023x
2022x + 1 - 1/2 + 1/2 - 1/3 + ... + 1/2022 - 2023 = 2023x
2023x - 2022x = 1 - 1/2023
x = 2022/2023
\(S=\dfrac{2mu2}{1.2}+\dfrac{2mu2}{2.3}+\dfrac{2mu2}{3.4}+...+\dfrac{2mu2}{2022.2023}\)
(mu = mũ)
\(S=\dfrac{2^2}{1.2}+\dfrac{2^2}{2.3}+\dfrac{2^2}{3.4}+...+\dfrac{2^2}{2022.2023}\)
\(S=2^2.\left(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{2022.2023}\right)\)
\(S=2^2.\left(\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{2022}-\dfrac{1}{2023}\right)\)
\(S=2^2.\left(\dfrac{1}{1}-\dfrac{1}{2023}\right)\)
\(S=2^2.\dfrac{2022}{2023}\)
\(S=\dfrac{2^2.2022}{2023}=\dfrac{8088}{2023}\)
\(x-\dfrac{1}{2}-\dfrac{1}{2.3}-\dfrac{1}{3.4}-\dfrac{1}{4.5}-...-\dfrac{1}{2021.2022}-\dfrac{1}{2022.2023}=\dfrac{-2024}{2023}\)
x-(1/1.2 + 1/2.3 + 1/3.4 + ...+ 1/2022.2023)= -2024/2023
x-(1-1/2 + 1/2-1/3 + 1/3-1/4 + ... + 1/2022-1/2023)=-2024/2023
x-(1-1/2023)=-2024/2023
x-2022/2023=-2024/2023
x = -2024/2023+2022/2023
x = -2/2023
Vậy x = -2/2023
a) Tính nhanh:
A = 1.2+2.3+3.4+...+2019.2020
b) Áp dụng kết quả phần a) để tính nhanh biểu thức:
B = 1.1+2.2+3.3+...+2019.2019
c) Tính nhanh:
C = 1.2.3+2.3.4+...+48.49.50
A=1.2+2.3+3.4+.............+2019.2020
3A=1.2.3+2.3.3+3.4.3+........................+2019.2020.3
3A=1.2.3+2.3.(4-1)+3.4.(5-2)+..............+2019.2020.(2021-2018)
3A=1.2.3-1.2.3+2.3.4-2.3.4+3.4.5-3.4.5+.............-2018.2019.2020+2019.2020.2021
3A=2019.2020.2021
A=2019.2020.2021 / 3
A=2747468660
Vậy A=2747468660 .
🎀
4c=4.[1.2.3 + 2.3.4 + 3.4.5 + 4.5.6 + . . . . . . + 48.49.50]
4c=1.2.3.4 +2.3.4.4 +3.4.5.4 +4.5.6.4 +.........+48.49.50.4
4c=1.2.3.4 +2.3.4.(5-1) + 3.4.5.(6-2) +4.5.6(7-3)+....+ 48.49.50(51-47)
4c=1.2.3.4 +2.3.4.5 --1.2.3.4 + 3.4.5.6-2.3.4.5 + 4.5.6.7-3.4.5.6+....+ 48.49.50.51-47.48.49.50 =48.49.50.51
C=(48.49.50.51)/4 = 1499400
Câu b khúc cuối mik ko chc 😥
Tính nhanh:
A=1.2+2.3+3.4+4.5+...1999.2000
B=1.1+2.2+3.3+4.4+....1999.1999
C=1.2.3+2.3.4+3.4.5+....+48.49.50
a Tính nhanh A=1.2+2.3+3.4+....+1999.2000
b Áp dụng kết quả câu (a) tính nhanh B = 1.1+2.2+3.3+....+1999.1999
c tính nhanh C =1.2.3+2.3.4+.....+48.49.50
a,Tính nhanh tổng sau
A= 1.2+2.3+3.4+....+1999.2000
b,Áp dụng kết quả phần a, tính nhanh B=1.1+2.2+3.2+....+1999.1999
c,Tính nhanh C=1.2.3+2.3.4+...+48.49.50
\(A=1.2+2.3+3,4+...+1999.2000\)
\(=>3A=1.2.3+2.3.3+3.4.3+...+1999.2000.3\)
\(=1.2.\left(3-0\right)+2.3.\left(4-1\right)+3.4.\left(5-2\right)+.....+1999.2000.\left(2001-1998\right)\)
\(=1.2.3-0.1.2+2.3.4-1.2.3+3.4.5-2.3.4+...+1999.2000.2001-1998.1999.2000\)
\(=1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+...+1999.2000.2001-1998.1999.2000\)
\(=1999.2000.2001\)
\(=>A=\frac{1999.2000.2001}{3}=......\) (bn dùng máy tính)
b,xem lại chỗ 3.2
c,tính 4C , biến đổi tương tự câu a
Tính nhanh
A=1.2+2.3+3.4+...+1999.2000
B=1.1+2.2+3.3+...+1999.1999
C=1.2.3+2.3.4+...+48.48.50
D=1.3+3.5+5.7+...+97.99
Bài của bạn giống bài của mình thật!