Những câu hỏi liên quan
DV
Xem chi tiết
NM
18 tháng 11 2021 lúc 17:01

\(ĐK:x^2-xy+y^2\ne0\)

Bình luận (0)
NL
Xem chi tiết
TH
2 tháng 2 2022 lúc 15:57

a) P xác định <=> \(\left\{{}\begin{matrix}x+3\ne0\\x-3\ne0\end{matrix}\right.\)

                      <=>\(\left\{{}\begin{matrix}x\ne-3\\x\ne3\end{matrix}\right.\)

                      <=>\(x\ne\pm3\)

b)Với \(x\ne\pm3\)

 \(P=\dfrac{3}{x+3}+\dfrac{1}{x-3}-\dfrac{18}{9-x^2}\)

     \(=\dfrac{3}{x+3}+\dfrac{1}{x-3}+\dfrac{18}{\left(x+3\right)\left(x-3\right)}\)

     \(=\dfrac{3\left(x-3\right)+\left(x+3\right)+18}{\left(x+3\right)\left(x-3\right)}\)

     \(=\dfrac{3x-9+x+3+18}{\left(x+3\right)\left(x-3\right)}\)

     \(=\dfrac{4x+12}{\left(x+3\right)\left(x-3\right)}\)

     \(=\dfrac{4\left(x+3\right)}{\left(x+3\right)\left(x-3\right)}=\dfrac{4}{x-3}\)

c)Với \(x\ne\pm3\)

P=4 <=>\(\dfrac{4}{x-3}=4\)

       <=>\(4x-12=4\)

       <=>\(4x=16\)

       <=>x=4(tm)

Vậy x=4

Bình luận (0)
MA
2 tháng 2 2022 lúc 16:08

a) ĐKXĐ `x + 3 ne 0 ` và `x -3  ne 0` và ` 9 -x^2 ne 0`

`<=> x ne -3 ` và `x ne 3` và `(3-x)(3+x) ne 0`

`<=> x ne -3` và `x ne 3`

b) Với `x ne +-3` ta có:

`P= 3/(x+3)  + 1/(x-3)- 18/(9-x^2)`

`P= [3(x-3)]/[(x-3)(x+3)] + (x+3)/[(x-3)(x+3)] + 18/[(x-3)(x+3)]`

`P= (3x-9)/[(x-3)(x+3)] + (x+3)/[(x-3)(x+3)] + 18/[(x-3)(x+3)]`

`P= (3x-9+x+3+18)/[(x-3)(x+3)]`

`P= (4x +12)/[(x-3)(x+3)]`

`P= (4(x+3))/[(x-3)(x+3)]`

`P= 4/(x-3)`

Vậy `P= 4/(x-3)` khi `x ne +-3`

c) Để `P=4`

`=> 4/(x-3) =4`

`=> 4(x-3) = 4`

`<=> 4x - 12=4`

`<=> 4x = 16

`<=> x= 4` (thỏa mãn ĐKXĐ)

Vậy `x=4` thì `P =4`

Bình luận (0)
H24
Xem chi tiết
H24
11 tháng 7 2021 lúc 20:08

a)ĐKXĐ:\(\begin{cases}x\ge0\\2\sqrt{x}-2\ne0\\1-x\ne0\\\end{cases}\)

`<=>` \(\begin{cases}x\ge0\\x\ne1\\\end{cases}\)

`B=1/(2sqrtx-2)-1/(2sqrtx+2)+sqrtx/(1-x)`

`=1/(2(sqrtx-1))-1/(2(sqrtx+1))-sqrtx/(x-1)`

`=(sqrtx+1-(sqrtx-1)-2sqrtx)/(2(sqrtx-1)(sqrtx+1))`

`=(2-2sqrtx)/(2(sqrtx-1)(sqrtx+1))`

`=(2(1-sqrtx))/(2(sqrtx-1)(sqrtx+1))`

`=-1/(sqrtx+1)`

`b)x=3`

`=>B=(-1)/(sqrt3+1)`

`=(-(sqrt3-1))/(3-1)`

`=(1-sqrt3)/2`

`c)|A|=1/2`

`<=>|(-1)/(sqrtx+1)|=1/2`

`<=>|1/(sqrtx+1)|=1/2`

`<=>1/(sqrtx+1)=1/2` do `1>0,sqrtx+1>=1>0`

`<=>sqrtx+1=2`

`<=>sqrtx=1`

`<=>x=1` loại vì `x ne 1`.

Bình luận (0)
NT
11 tháng 7 2021 lúc 20:13

a) ĐKXĐ: \(\left\{{}\begin{matrix}x\ge0\\x\ne1\end{matrix}\right.\)

Ta có: \(B=\dfrac{1}{2\sqrt{x}-2}-\dfrac{1}{2\sqrt{x}+2}+\dfrac{\sqrt{x}}{1-x}\)

\(=\dfrac{\sqrt{x}+1-\sqrt{x}+1-2\sqrt{x}}{2\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(=\dfrac{-2\left(\sqrt{x}-1\right)}{2\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(=\dfrac{-1}{\sqrt{x}+1}\)

b) Thay x=3 vào B, ta được:

\(B=\dfrac{-1}{\sqrt{3}+1}=\dfrac{-\sqrt{3}+1}{2}\)

c) Ta có: \(\left|A\right|=\dfrac{1}{2}\)

nên \(\left[{}\begin{matrix}A=\dfrac{1}{2}\\A=-\dfrac{1}{2}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\dfrac{-1}{\sqrt{x}+1}=\dfrac{1}{2}\\\dfrac{-1}{\sqrt{x}+1}=\dfrac{-1}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x}+1=-2\\\sqrt{x}+1=2\end{matrix}\right.\Leftrightarrow x=1\)(loại)

Bình luận (0)
NA
Xem chi tiết
LL
23 tháng 9 2021 lúc 8:54

a) \(ĐK:x\ge0,x\ne1\)

 \(=\dfrac{3x+3\sqrt{x}-3-\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)+\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\)

\(=\dfrac{3x+3\sqrt{x}-3-x+4+\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}=\dfrac{2x+4\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}=\dfrac{2\sqrt{x}\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}=\dfrac{2\sqrt{x}}{\sqrt{x}-1}\)

b) \(P=\dfrac{2\sqrt{x}}{\sqrt{x}-1}< 0\Leftrightarrow\sqrt{x}-1< 0\Leftrightarrow\sqrt{x}< 1\)

Kết hợp với đk:

\(\Rightarrow0\le x< 1\)

Bình luận (1)
CB
Xem chi tiết
H24
7 tháng 1 2021 lúc 11:52

x∈[0, ∞)

Bình luận (0)
NH
Xem chi tiết
NT
12 tháng 1 2023 lúc 9:24

a: ĐKXĐ: x<>1; x<>2; x<>3

\(K=\left(\dfrac{x^2}{\left(x-2\right)\left(x-3\right)}+\dfrac{x^2}{\left(x-1\right)\left(x-2\right)}\right)\cdot\dfrac{\left(x-1\right)\left(x-3\right)}{x^4+2x^2+1-x^2}\)

\(=\dfrac{x^3-x^2+x^3-3x^2}{\left(x-2\right)\left(x-3\right)\left(x-1\right)}\cdot\dfrac{\left(x-1\right)\left(x-3\right)}{\left(x^2+1+x\right)\left(x^2+1-x\right)}\)

\(=\dfrac{2x^3-4x^2}{\left(x-2\right)}\cdot\dfrac{1}{\left(x^2+x+1\right)\left(x^2-x+1\right)}\)

\(=\dfrac{2x^2\left(x-2\right)}{\left(x-2\right)\left(x^4+x^2+1\right)}=\dfrac{2x^2}{x^4+x^2+1}\)

b:

loading...

 

Bình luận (0)
TN
Xem chi tiết
H24
21 tháng 1 2023 lúc 18:04

\(a,A=\dfrac{1}{x-2}+\dfrac{1}{x+2}+\dfrac{x^2+1}{x^2-4}\left(dkxd:x\ne\pm2\right)\)

\(=\dfrac{x+2+x-2+x^2+1}{\left(x-2\right)\left(x+2\right)}\)

\(=\dfrac{x^2+2x+1}{\left(x-2\right)\left(x+2\right)}\)

\(=\dfrac{\left(x+1\right)^2}{x^2-4}\)

Vậy \(A=\dfrac{\left(x+1\right)^2}{x^2-4}\)

\(b,\) Theo đề, ta có : \(-2< x< 2\) 

\(\Rightarrow x-2< 0;x+2>0;\left(x+1\right)^2>0\)

\(\Rightarrow A< 0\) hay phân thức luôn có giá trị âm

 

Bình luận (0)
CP
Xem chi tiết
H24
7 tháng 4 2021 lúc 21:59

\(T=\sqrt{\dfrac{3\sqrt{x}}{\sqrt{x}-6}\cdot\dfrac{x-6\sqrt{x}}{\sqrt{x}-1}}=\sqrt{\dfrac{3\sqrt{x}}{\sqrt{x}-6}\cdot\dfrac{\sqrt{x}\left(\sqrt{x}-6\right)}{\sqrt{x}-1}}\\ =\sqrt{\dfrac{3\sqrt{x}\cdot\sqrt{x}}{\sqrt{x}-1}}=\sqrt{\dfrac{3x}{\sqrt{x}-1}}\\ =\sqrt{\dfrac{3\left(x-1\right)+3}{\sqrt{x}-1}}=\sqrt{3\left(\sqrt{x}+1\right)+\dfrac{3}{\sqrt{x}-1}}\\ =\sqrt{3\left(\sqrt{x}-1+\dfrac{1}{\sqrt{x}-1}\right)+6}\)

Áp dụng bất đẳng thức Cosi ta có:

\(\sqrt{x}-1+\dfrac{1}{\sqrt{x}-1}\ge2\)

\(\Rightarrow T\ge\sqrt{3\cdot2+6}=2\sqrt{3}\)

Dấu = xảy ra khi x=4

Bình luận (0)
PB
Xem chi tiết
NT
10 tháng 3 2023 lúc 15:02

a: |2x-3|=1

=>2x-3=1 hoặc 2x-3=-1

=>x=1(nhận) hoặc x=2(loại)

KHi x=1 thì \(A=\dfrac{1+1^2}{2-1}=2\)

b: ĐKXĐ: x<>-1; x<>2

\(B=\dfrac{2x^2-4x+3x+3-2x^2-1}{\left(x-2\right)\left(x+1\right)}=\dfrac{-x+2}{\left(x-2\right)\left(x+1\right)}=\dfrac{-1}{x+1}\)

Bình luận (0)