Những câu hỏi liên quan
DB
Xem chi tiết
CV
2 tháng 8 2018 lúc 7:47

đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\)\(\Rightarrow\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\)

a) thay \(a=bk;c=dk\) ta có

\(\dfrac{5a+3b}{5a-3b}=\dfrac{5bk+3b}{5bk-3b}=\dfrac{b\left(5k+3\right)}{b\left(5k-3\right)}=\dfrac{5k+3}{5k-3}\)(1)

\(\dfrac{5c+3d}{5c-3d}=\dfrac{5dk+3d}{5dk-3d}=\dfrac{d\left(5k+3\right)}{d\left(5k-3\right)}=\dfrac{5k+3}{5k-3}\)(2)

từ (1);(2)\(\Rightarrow\dfrac{5a+3b}{5a-3b}=\dfrac{5c+3d}{5c-3d}\)

b) thay \(a=bk;c=dk\) ta có

\(\dfrac{7a^2+3ab}{11a^2-8b^2}=\dfrac{7(bk)^2+3bkb}{11(bk)^2-8b^2}=\dfrac{7b^2k^2+3b^2k}{11b^2k^2-8b^2}\)

\(=\dfrac{b^2\left(7k^2+3k\right)}{b^2\left(11k^2-8\right)}=\dfrac{7k^2+3k}{11k^2-8}\)(3)

\(\dfrac{7c^2+3cd}{11c^2-8d^2}=\dfrac{7\left(dk\right)^2+3dkd}{11\left(dk\right)^2-8d^2}=\dfrac{7d^2k^2+3d^2k}{11d^2k^2-8d^2}\)

\(=\dfrac{d^2\left(7k^2+3k\right)}{d^2\left(11k^2-8\right)}=\dfrac{7k^2+3k}{11k^2-8}\)(4)

từ (3);(4)\(\Rightarrow\dfrac{7a^2+3ab}{11a^2-8b^2}=\dfrac{7c^2+3cd}{11c^2-8d^2}\)

Bình luận (0)
NP
Xem chi tiết
NP
Xem chi tiết
TT
19 tháng 6 2015 lúc 14:21

ĐẶt \(\frac{a}{b}=\frac{c}{d}=x\Leftrightarrow a=bx;c=dx\)

thay vào vế trái ta có 

 \(\frac{5a+3b}{5a-3b}=\frac{5.b.x+3b}{5.b.x-3b}=\frac{b\left(5x+3\right)}{b\left(5x-3\right)}=\frac{5x+3}{5x-3}\) (1)

Thay vào vế phải ta có 

\(\frac{5c+3d}{5c-3d}=\frac{5.d.x+3d}{5.d.x-3d}=\frac{d\left(5x+3\right)}{d\left(5x-3\right)}=\frac{5x+3}{5x-3}\) (2)

Từ (1) và (2) => ĐPCM

Bình luận (0)
TN
19 tháng 6 2015 lúc 14:25

mk giải bài này nhé:

từ a/b = c/d  => a/c = b/d   => 5a/5c = 3b/3d

áp dụng tính chất của dãy tỉ số bằng nhau ta có:

\(\frac{5a}{5c}=\frac{3b}{3d}=\frac{5a+3b}{5c+3d}=\frac{5a-3b}{5c-3d}\)

từ: \(\frac{5a+3b}{5c+3d}=\frac{5a-3b}{5c-3d}\) áp dụng tính chất của tỉ lệ thức  ta được:

  \(\frac{5a+3b}{5a-3b}=\frac{5c+3d}{5c-3d}\)     (đpcm)

Bình luận (0)
LP
19 tháng 6 2015 lúc 14:34

thơ tôi chỉ có 4 dòng

đã xong dòng 1 bắt đầu dòng 2

dòng 3 sáu chữ ko dài

kết thúc dòng 4 hết bài cho nhanh .

Bình luận (0)
Xem chi tiết
NM
12 tháng 12 2021 lúc 8:32

\(\dfrac{a}{b}=\dfrac{c}{d}\Rightarrow\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{3b}{3d}=\dfrac{5a}{5c}=\dfrac{5a+3b}{5c+3d}=\dfrac{5a-3b}{5c-3d}\\ \Rightarrow\dfrac{5a+3b}{5a-3b}=\dfrac{5c+3d}{5c-3d}\)

Bình luận (0)
DL
Xem chi tiết
DV
28 tháng 10 2017 lúc 20:54

Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\left(k\ne0\right)\)

\(\Rightarrow\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\)

\(\Rightarrow\dfrac{5a+3b}{5a-3b}=\dfrac{5.bk+3b}{5.bk-3b}=\dfrac{b\left(5k+3\right)}{b\left(5k-3\right)}=\dfrac{5k+3}{5k-3}\)(1)

\(\dfrac{5c+3d}{5c-3d}=\dfrac{5.dk+3d}{5.dk-3d}=\dfrac{d\left(5k+3\right)}{d\left(5k-3\right)}=\dfrac{5k+3}{5k-3}\)(2)

Từ (1) và (2) \(\Rightarrow\dfrac{5a+3b}{5a-3b}=\dfrac{5c+3d}{5c-3d}\)

Bình luận (0)
LQ
Xem chi tiết
LC
16 tháng 10 2015 lúc 11:59

Đặt \(\frac{a}{b}=\frac{c}{d}=k=>a=bk,c=dk\)

=>\(\frac{5a+3b}{5a-3b}=\frac{5.bk+3b}{5.bk-3b}=\frac{5.bk-3b+3b+3b}{5.bk-3b}=1+\frac{6b}{\left(5k-3\right).b}=1+\frac{6}{5k-3}\)

\(\frac{5c+3d}{5c-3d}=\frac{5.dk+3d}{5.dk-3d}=\frac{5.dk-3d+3d+3d}{5.dk-3d}=1+\frac{6d}{\left(5k-3\right).d}=1+\frac{6}{5k-3}\)

=>\(\frac{5a+3b}{5a-3b}=1+\frac{6}{5k-3}=\frac{5c+3d}{5c-3d}\)

=>\(\frac{5a+3b}{5a-3b}=\frac{5c+3d}{5c-3d}\)

Bình luận (0)
H24
Xem chi tiết
AK
26 tháng 9 2021 lúc 9:02

học tốt

Bình luận (0)
 Khách vãng lai đã xóa
TL
Xem chi tiết
AH
2 tháng 3 2023 lúc 15:37

Lời giải:

Đặt $\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=bk; c=dk$.

Khi đó:

$\frac{5a+3b}{5a-3b}=\frac{5bk+3bk}{5bk-3bk}=\frac{8bk}{2bk}=4(1)$

$\frac{5c+3d}{5c-3d}=\frac{5dk+3dk}{5dk-3dk}=\frac{8dk}{2dk}=4(2)$

Từ $(1); (2)$ suy ra điều phải chứng minh.

 

Bình luận (0)
ND
Xem chi tiết
LT
8 tháng 7 2017 lúc 21:25

từ a/b = c/d => a/c = b/d => 5a/5c = 3b/3d

áp dụng tính chất của dãy tỉ số bằng nhau ta có: 

\(\frac{5a}{5c}=\frac{3b}{3d}=\frac{5a+3b}{5c+3d}=\frac{5a-3b}{5c-3d}\)

từ: \(\frac{5a+3b}{5c+3d}=\frac{5a-3b}{5c-3d}\)áp dụng tính chất ta dc

\(\frac{5a+3b}{5a-3b}=\frac{5c+3d}{5c-3d}\)(đcpm)

Bình luận (0)