Chứng tỏ rằng: 1.3.5...(2n-1)/(n+1).(n+2).(n+3)...2n=1/2^n với nϵN*
Đề bài: Chứng minh rằng 1.3.5. … .(2n-1) / (n+1).(n+2). … .2n = 1/2n. Đề bài: Chứng minh rằng 1.3.5. … .(2n-1) / (n+1).(n+2). … .2n = 1/2n.
Ta có: 1.3.5...(2n - 1)
= { [1.3.5....(2n - 1)].(2.4.6...2n) }/(2.4.6...2n)
= (1.2.3.4....2n)/[ (1.2).(2.2).(3.2)...(n.2) ]
= {(1.2.3.4...n).[ (n + 1)(n + 2)...2n ] }/[ (1.2.3..n)(2.2.2...2) ]
= [ (n + 1)(n + 2)...2n ]/(2.2.2...2)
=> 1.3.5...(2n - 1) = [ (n + 1)(n + 2)...2n ]/(2.2.2...2)
Do n ∈ Z+ => 1.3.5...(2n - 1) thuộc nguyên dương
=> [ (n + 1)(n + 2)...2n ]/(2.2.2...2) thuộc nguyên dương
=> [ (n + 1)(n + 2)...2n ] chia hết cho (2.2.2...2)
Bây giờ ta cần tìm số chữ số 2 trong cụm (2.2.2....2)
Ta thấy: 2 -> 2n có (2n - 2)/2 + 1 = n chữ số => trong cụm (2.2.2...2) có n chữ số 2 (Vì trong mỗi số từ 2 -> 2n ta đều lấy ra 1 số 2)
=> [ (n + 1)(n + 2)...2n ] chia hết cho 2^n
Chứng minh rằng :
a) \(\dfrac{1.3.5.....39}{21.22.23.....40}=\dfrac{1}{2^{20}}\)
b) \(\dfrac{1.3.5....\left(2n-1\right)}{\left(n+1\right)\left(n+2\right)\left(n+3\right)...2n}=\dfrac{1}{2^n}\) với \(n\in\) N*
a) Vế trái \(=\dfrac{1.3.5...39}{21.22.23...40}=\dfrac{1.3.5.7...21.23...39}{21.22.23....40}=\dfrac{1.3.5.7...19}{22.24.26...40}\)
\(=\dfrac{1.3.5.7....19}{2.11.2.12.2.13.2.14.2.15.2.16.2.17.2.18.2.19.2.20}\\ =\dfrac{1.3.5.7.9.....19}{\left(1.3.5.7.9...19\right).2^{20}}=\dfrac{1}{2^{20}}\left(đpcm\right)\)
b) Vế trái
\(=\dfrac{1.3.5...\left(2n-1\right)}{\left(n+1\right).\left(n+2\right).\left(n+3\right)...2n}\\ =\dfrac{1.2.3.4.5.6...\left(2n-1\right).2n}{2.4.6...2n.\left(n+1\right)\left(n+2\right)...2n}\\ =\dfrac{1.2.3.4...\left(2n-1\right).2n}{2^n.1.2.3.4...n.\left(n+1\right)\left(n+2\right)...2n}\\ =\dfrac{1}{2^n}.\\ \left(đpcm\right)\)
chứng tỏ rằng : \(\frac{1}{4^2}+\frac{1}{6^2}+...+\frac{1}{2n^2}< \frac{1}{4}\)(nϵN,n≥2)
Đặt \(A=\frac{1}{4^2}+\frac{1}{6^2}+\frac{1}{8^2}+...+\frac{1}{2n^2}\)
\(\Rightarrow A=\frac{1}{2}.\left(\frac{2}{2.4}+\frac{2}{4.6}+\frac{2}{6.8}+...+\frac{2}{\left(2n-2\right).2n}\right)\)
\(\Rightarrow A=\frac{1}{2}.\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{8}+...+\frac{1}{2n-2}-\frac{1}{2n}\right)\)
\(\Rightarrow A=\frac{1}{2}.\left(\frac{1}{2}-\frac{1}{2n}\right)\)
\(\Rightarrow A=\frac{1}{2}.\frac{1}{2}-\frac{1}{2}.\frac{1}{2n}\)
\(\Rightarrow A=\frac{1}{4}-\frac{1}{4n}\)
Vì \(\frac{1}{4}-\frac{1}{4n}< \frac{1}{4}.\)
\(\Rightarrow A< \frac{1}{4}\left(đpcm\right)\left(n\in N;n\ge2\right).\)
Chúc bạn học tốt!
Đề bài: Chứng minh rằng 1.3.5. … .(2n-1) / (n+1).(n+2). … .2n = 1/2n. Đề bài: Chứng minh rằng 1.3.5. … .(2n-1) / (n+1).(n+2). … .2n = 1/2n.
Ai làm đc mk bái làm sư phụ và TICK luôn. Nhanh lên nhé, mai mk phải nộp rùi.
Đề bài: Chứng minh rằng 1.3.5. … .(2n-1) / (n+1).(n+2). … .2n = 1/2n. Đề bài: Chứng minh rằng 1.3.5. … .(2n-1) / (n+1).(n+2). … .2n = 1/2n.
Ai làm đc mk bái làm sư phụ và TICK luôn. Nhanh lên nhé, mai mk phải nộp rùi.
Bạn viết đề bài ra rõ ràng lại hộ mình cái
Chứng minh rằng:
a)\(\frac{1.3.5...39}{21.22.23...40}=\frac{1}{2^{20}}\)
b)\(\frac{1.3.5...\left(2n-1\right)}{\left(n+1\right)\left(n+2\right)\left(n+3\right)...2n}=\frac{1}{2^n}\)với n thuộc N*
a) Nhân cả tử và mẫu với 2 . 4 . 6 ... 40 ta được :
\(\frac{1.3.5...39}{21.22.23...40}=\frac{\left(1.3.5...39\right).\left(2.4.6...40\right)}{\left(21.22.23...40\right).\left(2.4.6...40\right)}\)
\(=\frac{1.2.3...39.40}{1.2.3...40.2^{20}}=\frac{1}{2^{20}}\)
b) Nhân cả tử và mẫu với 2 . 4 . 6 ... 2n ta được :
\(\frac{1.3.5...\left(2n-1\right)}{\left(n+1\right)\left(n+2\right)\left(n+3....2n\right)}=\frac{1.3.5...\left(2n-1\right).\left(2.4.6...2n\right)}{\left(n+1\right)\left(n+2\right)...\left(2n\right).\left(2.4.6...2n\right)}\)
\(=\frac{1.2.3...\left(2n-1\right).2n}{1.2.3...2n.2^n}=\frac{1}{2^n}\)
Chứng minh rằng:
1.3.5...39/21.22.23...40=1/2.2.2.2...2 (20 chữ số 2)
1.2.3...(2n-1)/(n+1)(n+2)(n+3)...2n=1/2.2 với n là phần tử của N*
Chứng minh rằng
1.3.5....( 2n - 1)
(n + 1) (n+2)(n+3)... 2n
= 1
2n
1.a)Chứng tỏ rằng:\(\dfrac{2n+5}{n+3}\)(nϵN) là phân số tối giản.
b)Tìm các giá trị nguyên của n để phân số B=\(\dfrac{2n+5}{n+3}\) có giá trị là số nguyên.
2.Ở lớp 6A,số học sinh giỏi học kì I bằng \(\dfrac{3}{7}\) số còn lại.Cuối năm có thêm 4 học sinh đạt loai giỏi bằng \(\dfrac{2}{3}\) số còn lại.Tính số học sinh của lớp 6A ?
1. a) Gọi a là ƯCLN của 2n+5 và n+3.
- Ta có: (n+3)⋮a
=>(2n+6)⋮a
Mà (2n+5)⋮a nên [(2n+6)-(2n+5)]⋮a
=>1⋮a
=>a=1 hay a=-1.
- Vậy \(\dfrac{2n+5}{n+3}\) là phân số tối giản.
b) -Để phân số B có giá trị là số nguyên thì:
\(\left(2n+5\right)⋮\left(n+3\right)\)
=>\(\left(2n+6-1\right)⋮\left(n+3\right)\)
=>\(-1⋮\left(n+3\right)\).
=>\(n+3\inƯ\left(-1\right)\).
=>\(n+3=1\) hay \(n+3=-1\).
=>\(n=-2\) (loại) hay \(n=-4\) (loại).
- Vậy n∈∅.
1. a) Gọi `(2n +5 ; n + 3 ) = d`
`=> {(2n+5 vdots d),(n+3 vdots d):}`
`=> {(2n+5 vdots d),(2(n+3) vdots d):}`
`=> {(2n+5 vdots d),(2n+6 vdots d):}`
Do đó `(2n+6) - (2n+5) vdots d`
`=> 1 vdots d`
`=> d = +-1`
Vậy `(2n+5)/(n+3)` là phân số tối giản
b) `B = (2n+5)/(n+3)` ( `n ne -3`)
`B = [2(n+3) -1]/(n+3)`
`B= [2(n+3)]/(n+3) - 1/(n+3)`
`B= 2 - 1/(n+3)`
Để B nguyên thì `1/(n+3)` có giá trị nguyên
`=> 1 vdots n+3`
`=> n+3 in Ư(1) = { 1 ; -1}`
+) Với `n+3 =1 => n = -2`(thỏa mãn điều kiện)
+) Với `n+ 3 = -1 => n= -4` (thỏa mãn điều kiện)
Vậy `n in { -2; -4}` thì `B` có giá trị nguyên
2. Gọi số học sinh giỏi kì `I` của lớp `6A` là `x` (` x in N **`)(học sinh)
Số học sinh còn lại của lớp `6A` là : `7/3 x` (học sinh)
Số học sinh giỏi của lớp `6A` cuối năm là: `x+4` (học sinh)
Cuối năm số học sinh còn lại của lớp `6A` là: `3/2 (x+4)` (học sinh)
Vì số học sinh của lớp `6A` không đổi nên ta có :
`7/3x + x = 3/2 (x+4) + x+4`
`=> 10/3 x = 3/2 x + 6 + x + 4`
`=> 10/3 x - 3/2 x -x = 10 `
`=> 5/6x = 10`
`=> x=12` (thỏa mãn điều kiện)
`=>` Số học sinh giỏi kì `I` của lớp `6A` là `12` học sinh
`=>` Số học sinh còn lại của lớp `6A` là : `12 . 7/3 =28` học sinh
`=>` Số học sinh của lớp `6A` là : `28 + 12 = 40` (học sinh)
Vậy lớp `6A` có `40` học sinh