Những câu hỏi liên quan
TT
Xem chi tiết
TT
Xem chi tiết
NT
25 tháng 5 2022 lúc 19:45

\(A=n^3-n-6n\)

\(=n\left(n-1\right)\left(n+1\right)-6n\)

Vì n;n-1;n+1 là ba số nguyên liên tiếp

nên \(n\left(n-1\right)\left(n+1\right)⋮3!=6\)

hay A chia hết cho 6

Bình luận (0)
NN
Xem chi tiết
NT
Xem chi tiết
TT
23 tháng 9 2020 lúc 21:47

Có :

\(A=n^3-7n\)

\(=\left(n^3-n\right)-6n\)

\(=n.\left(n^2-1\right)-6n\)

\(=\left(n+1\right)n\left(n-1\right)-6n⋮6\)

Bình luận (0)
 Khách vãng lai đã xóa
H24
30 tháng 9 2020 lúc 10:27

\(A=n^3-7n\)

\(=n^3-n-6n\)

\(=\left(n^3-n\right)-6n\)

\(=n\left(n^2-1\right)-6n\)

\(=\left(n+1\right)n\left(n-1\right)-6n⋮6\)

\(\Rightarrow A⋮6\left(dpcm\right)\)

Bình luận (0)
 Khách vãng lai đã xóa
CP
Xem chi tiết
DN
Xem chi tiết
YK
21 tháng 11 2015 lúc 11:50

Cristiano Ronaldo dễ thì làm con mệ nó đi chứ cứ ở đấy mà nói dễ thì đứa nào chả nói đc

Bình luận (0)
TD
21 tháng 11 2015 lúc 11:49

n3-n =n.(n2-1)=n.(n2-12) = n.(n-1).(n+1)

Vì n;n-1;n+1 là 3 số tự nhiên liên tiếp nên:

+)Tồn tại một số chi hết cho 2 =>n3-n chia hết cho 2 (1)

+)Tồn tại một số chia hết cho 3=>n3-n chia hết cho 3 (2)

Từ (1) và (2) kết hợp với (2;3)=1 

=>n3-n chia hết cho (2.3)

=>n3-n chia hết cho 6 (đpcm)

Bình luận (0)
TT
Xem chi tiết
H24
23 tháng 9 2017 lúc 21:22

Trần Long Tăng

Ta có :

\(n^3+11n\)

\(=n^3-n+12n\)

\(=n\left(n^2-1\right)+12n\)

\(=\left(n-1\right)\left(n-1\right)n+12n\)

Vì \(n-1\text{ };\text{ }n\text{ };\text{ }n+1\)là tích 3 số nguyên liên tiếp nên : \(n\left(n-1\right)\left(n+1\right)\) chia hết cho 6 .

Mà 12n chia hết cho 6 .

\(\Rightarrow n^3+11n\)chia hết cho 6 .

Bình luận (0)
TT
20 tháng 9 2018 lúc 21:10

Cho a,b,c khác 0 và a+b+c=0.Tính giá trị biểu thức

Q=1/a^2+b^2-c^2 + 1/b^2+c^2-a^2 +1/a^2+c^2-b^2

Bình luận (0)
H24
15 tháng 4 2019 lúc 7:59

B=n3+17n=n3-n+18n

vì 18n chia hết cho 6          (1)

=> ta phải chứng minh n3-n chia hết cho 6

ta có: n3-n=n(n2-1)=n(n-1)(n+1)

vì tích của 2 số tự nhiên liên tiếp chi hết cho 6               (2)

từ (1) và (2)=> B chia hết cho 6

Bình luận (0)
KT
Xem chi tiết
NT
26 tháng 10 2022 lúc 23:08

\(A=\left(n-2\right)\left(n-3\right)\left(n+1\right)\left(2n+1\right)\)

Vì n-2;n-3 là hai số liên tiếp

nên (n-2)(n-3) chia hết cho 2

=>A chia hết cho 2

TH1: n=3k

=>n-3=3k-3 chia hết cho 3

TH2: n=3k+1

=>2n+1=6k+2+1=6k+3 chia hết cho 3

TH3: n=3k+2

=>n+1=3k+3 chia hết cho 3

=>A chia hết cho 6

Bình luận (0)
KT
Xem chi tiết
H24
4 tháng 2 2017 lúc 15:24

\(n^3-n=n\left(n^2-1\right)=n\left(n-1\right)\left(n+1\right)\\ \) luôn chia hết cho 3

\(\Rightarrow n^3-n+2\) không chia hết cho 3=> không chia hết cho 6 => dpcm

Bình luận (0)