Những câu hỏi liên quan
NL
Xem chi tiết
VH
15 tháng 6 2017 lúc 22:16

A = \(\frac{x^2}{3}+\frac{x^2}{3}+\frac{x^2}{3}+\frac{1}{x^3}+\frac{1}{x^3}\ge5\sqrt[5]{\frac{1}{27}}\)

dấu bằng xảy ra khi x = \(\sqrt[5]{3}\)

Bình luận (0)
DV
Xem chi tiết
PQ
Xem chi tiết
NL
26 tháng 12 2022 lúc 20:47

Cả 2 biểu thức này đều ko tồn tại GTNN

GTNN chỉ tồn tại khi có thêm điều kiện, với \(\dfrac{x^2}{x+3}\) thì điều kiện là \(x>-3\), còn \(\dfrac{x^2}{x-2}\) thì điều kiện là \(x>2\)

Bình luận (1)
NL
26 tháng 12 2022 lúc 21:12

Giả sử có thêm điều kiện tương ứng (lần lượt là x>-3 và x>2)

Đặt \(A=\dfrac{x^2}{x+3}=\dfrac{x^2-9+9}{x+3}=\dfrac{\left(x-3\right)\left(x+3\right)+9}{x+3}=x-3+\dfrac{9}{x+3}\)

\(A=x+3+\dfrac{9}{x+3}-6\ge2\sqrt{\dfrac{9\left(x+3\right)}{x+3}}-6=0\)

\(A_{min}=0\) khi \(x+3=\dfrac{9}{x+3}\Rightarrow x=0\)

Đặt \(B=\dfrac{x^2}{x-2}=\dfrac{x^2-4+4}{x-2}=\dfrac{\left(x-2\right)\left(x+2\right)+4}{x-2}=x+2+\dfrac{4}{x-2}\)

\(B=x-2+\dfrac{4}{x-2}+4\ge2\sqrt{\dfrac{4\left(x-2\right)}{x-2}}+4=8\)

\(B_{min}=8\) khi \(x-2=\dfrac{4}{x-2}\Rightarrow x=4\)

Bình luận (0)
L2
Xem chi tiết
PG
28 tháng 7 2021 lúc 20:40

Tham khảo thử đúng không nha mn

Áp dụng bất đẳng thức cô si cho hai số dương ta có

\(x+y\ge2\sqrt{xy}\Rightarrow xy\le\dfrac{\left(x+y\right)^2}{4}\Rightarrow xy\le\dfrac{2017^2}{4}=\dfrac{4068289}{4}\)

Dấu " = " xảy ra khi:   \(x=y=\dfrac{2017}{2}=1008,5\)

Vậy GTLN của tích xy là \(\dfrac{4068289}{4}\) khi \(x=y=1008,5\)

 

Bình luận (0)
ND
Xem chi tiết
H24
Xem chi tiết
TA
9 tháng 7 2017 lúc 21:42

1, 

( x+y+z) lớn hơn bằng 3. căn bậc 3 của xyz

( x+y+z) ^ 3 lớn hơn bằng 27. xyz

x + y + z = 1 nên 27.xyz nhỏ hơn bằng 1

xyz nhỏ hơn bằng 1/27

dấu bằng xảy ra khi x = y = z = 1/3...

câu b tương tự .... mấy lâu bận nên ko giải được ... xin lỗi nhé

Bình luận (0)
NA
Xem chi tiết
KH
Xem chi tiết
LH
7 tháng 6 2021 lúc 17:23

a)Có \(a^2+1\ge2a\) với mọi a; \(b^2+1\ge2b\) với mọi b

Cộng vế với vế \(\Rightarrow a^2+b^2+2\ge2\left(a+b\right)\)

Dấu = xảy ra <=> a=b=1

b) Áp dụng BĐT bunhiacopxki có:

\(\left(x+y\right)^2\le\left(1+1\right)\left(x^2+y^2\right)\Leftrightarrow\left(x+y\right)^2\le2\)

\(\Leftrightarrow-\sqrt{2}\le x+y\le\sqrt{2}\)

\(\Rightarrow\left(x+y\right)_{max}=\sqrt{2}\Leftrightarrow\left\{{}\begin{matrix}x+y=\sqrt{2}\\x=y\end{matrix}\right.\)\(\Leftrightarrow x=y=\dfrac{\sqrt{2}}{2}\)

\(\left(x+y\right)_{min}=-\sqrt{2}\Leftrightarrow\left\{{}\begin{matrix}x+y=-\sqrt{2}\\x=y\end{matrix}\right.\)\(\Leftrightarrow x=y=-\dfrac{\sqrt{2}}{2}\)

c) \(S=\dfrac{1}{ab}+\dfrac{1}{a^2+b^2}=\dfrac{1}{a^2+b^2}+\dfrac{1}{2ab}+\dfrac{1}{2ab}\)

Với x,y>0, ta có: \(\dfrac{1}{x}+\dfrac{1}{y}\ge\dfrac{4}{x+y}\) (1)

Thật vậy (1) \(\Leftrightarrow\dfrac{y+x}{xy}\ge\dfrac{4}{x+y}\Leftrightarrow\left(x+y\right)^2\ge4xy\)\(\Leftrightarrow\left(x-y\right)^2\ge0\) (lđ)

Áp dụng (1) vào S ta được:

\(S\ge\dfrac{4}{a^2+b^2+2ab}+\dfrac{1}{2ab}\)

Lại có: \(ab\le\dfrac{\left(a+b\right)^2}{4}\) \(\Leftrightarrow2ab\le\dfrac{\left(a+b\right)^2}{2}\Leftrightarrow2ab\le\dfrac{1}{2}\)\(\Rightarrow\dfrac{1}{2ab}\ge2\)

\(\Rightarrow S\ge\dfrac{4}{\left(a+b\right)^2}+2=6\)

\(\Rightarrow S_{min}=6\Leftrightarrow a=b=\dfrac{1}{2}\)

Bình luận (0)
TT
Xem chi tiết
TT
13 tháng 9 2015 lúc 12:33

Tròi vậy cũng hỏi 

Bình luận (0)