chứng minh:
\(\frac{\sqrt{ab}-b}{b}-\sqrt{\frac{a}{b}}< 0\)với \(a\ge0\);\(b\ge0\)
CHỨNG MINH
a) \(\frac{\left(\sqrt{a}+1\right)^2-4\sqrt{a}}{\sqrt{a}-1}+\frac{a+\sqrt{a}}{\sqrt{a}}=2\sqrt{a}\) \(\left(a>0;a\ne1\right)\)
b) \(\frac{x\sqrt{x}+y\sqrt{y}}{\sqrt{x}+\sqrt{y}}-\left(\sqrt{x}-\sqrt{y}\right)^2=\sqrt{xy}\) \(\left(x\ge0;y\ge0\right)\)
c) \(\frac{a\sqrt{b}-b\sqrt{a}}{\sqrt{ab}}:\frac{a-b}{\sqrt{a}-\sqrt{b}}=1\) \(\left(a>0;b>0;a\ne b\right)\)
d) \(\left[\frac{\left(\sqrt{a}-\sqrt{b}\right)^2+4\sqrt{ab}}{\sqrt{a}+\sqrt{b}}-\frac{a\sqrt{b}-b\sqrt{a}}{\sqrt{ab}}\right]:\sqrt{b}=2\) \(\left(a>0;b>0\right)\)
Giúp mình với, cảm ơn mn <3
cau c í mk thấy bn chép sai đề nên mk sửa lại đề rồi bạn xem lại đề rồi so với bài làm của mk nha có j ko hiểu thì ib mk nha
\(a)VT = \dfrac{{{{\left( {\sqrt a + 1} \right)}^2} - 4\sqrt a }}{{\sqrt a - 1}} + \dfrac{{a + \sqrt a }}{{\sqrt a }}\\ = \dfrac{{a + 2\sqrt a + 1 - 4\sqrt a }}{{\sqrt a - 1}} + \dfrac{{\sqrt a \left( {\sqrt a + 1} \right)}}{{\sqrt a }}\\ = \dfrac{{a - 2\sqrt a + 1}}{{\left( {\sqrt a - 1} \right)}} + \sqrt a + 1\\ = \dfrac{{{{\left( {\sqrt a - 1} \right)}^2}}}{{\sqrt a - 1}} + \sqrt a + 1\\ = \sqrt a - 1 + \sqrt a + 1\\ = 2\sqrt a = VP (đpcm) \)
\(b)VT = \dfrac{{x\sqrt x + y\sqrt y }}{{\sqrt x + \sqrt y }} - {\left( {\sqrt x - \sqrt y } \right)^2}\\ = \dfrac{{\left( {\sqrt x + \sqrt y } \right)\left( {x - \sqrt {xy} + y} \right)}}{{\sqrt x + \sqrt y }} - \left( {x - 2\sqrt {xy} + y} \right)\\ = x - \sqrt {xy} + y - x + 2\sqrt {xy} - y\\ = \sqrt {xy} (đpcm)\\ c)VT = \dfrac{{a\sqrt b - b\sqrt a }}{{\sqrt {ab} }}:\dfrac{{a - b}}{{\sqrt a + \sqrt b }}\\ = \dfrac{{\sqrt {ab} \left( {\sqrt a - \sqrt b } \right)}}{{\sqrt {ab} }}.\dfrac{{\sqrt a + \sqrt b }}{{a - b}}\\ = \sqrt a - \sqrt b .\dfrac{{\sqrt a + \sqrt b }}{{a - b}}\\ = \dfrac{{\left( {\sqrt a - \sqrt b } \right)\left( {\sqrt a + \sqrt b } \right)}}{{a - b}}\\ = \dfrac{{a - b}}{{a - b}} = 1 (đpcm)\\ d)VT = \left[ {\dfrac{{{{\left( {\sqrt a - \sqrt b } \right)}^2} + 4\sqrt {ab} }}{{\sqrt a + \sqrt b }} - \dfrac{{a\sqrt b - b\sqrt a }}{{\sqrt {ab} }}} \right]:\sqrt b \\ = \dfrac{{a - 2\sqrt {ab} + b + 4\sqrt {ab} }}{{\sqrt a + \sqrt b }} - \dfrac{{\sqrt {ab} \left( {\sqrt a - \sqrt b } \right)}}{{\sqrt {ab} }}:\sqrt b \\ = \dfrac{{{{\left( {\sqrt a + \sqrt b } \right)}^2}}}{{\sqrt a + \sqrt b }} - \left( {\sqrt a - \sqrt b } \right):\sqrt b \\ = \sqrt a + \sqrt b - \sqrt a + \sqrt b :\sqrt b \\ = \dfrac{{2\sqrt b }}{{\sqrt b }} = 2 (đpcm) \)
Câu c đề sai (đã sửa)
chứng minh đẳng thức
\(\left(\frac{a\sqrt{b}+b\sqrt{a}}{\sqrt{a}+\sqrt{b}}+\frac{a-b}{\sqrt{a}-\sqrt{b}}-\sqrt{ab}\right).\frac{1}{\sqrt{a}+\sqrt{b}}=1\)
với a\(\ge0\)
ĐK: \(a,b\ge0,a\ne b\)
\(A=\left(\frac{\sqrt{ab}\left(\sqrt{a}+\sqrt{b}\right)}{\sqrt{a}+\sqrt{b}}+\sqrt{a}+\sqrt{b}-\sqrt{ab}\right).\frac{1}{\sqrt{a}+\sqrt{b}}\)
\(A=\left(\sqrt{ab}+\sqrt{a}+\sqrt{b}-\sqrt{ab}\right).\frac{1}{\sqrt{a}+\sqrt{b}}\)
\(A=\left(\sqrt{a}+\sqrt{b}\right).\frac{1}{\sqrt{a}+\sqrt{b}}=1=VP\)
Vậy đẳng thức được cm.
Chứng minh rằng :
a) \(\frac{\left(a+b\right)^2}{2}+\frac{a+b}{4}\ge a\sqrt{b}+b\sqrt{a}\)với \(a,b\ge0\)
b) \(\sqrt{\frac{a}{b+c}}+\sqrt{\frac{b}{c+a}}+\sqrt{\frac{c}{a+b}}>2\)với \(a,b,c>0\)
\(\sqrt{\frac{a}{b+c}}=\frac{a}{\sqrt{a\left(b+c\right)}}\ge\frac{2a}{a+b+c}\)
Tương tự:
\(\sqrt{\frac{b}{c+a}}\le\frac{2b}{a+b+c};\sqrt{\frac{c}{a+b}}\le\frac{2c}{a+b+c}\)
\(\Rightarrow LHS\le\frac{2a}{a+b+c}+\frac{2b}{a+b+c}+\frac{2c}{a+b+c}=2\)
Tuy nhiên đẳng thức ko xảy ra :p
a) \(\frac{\left(a+b\right)^2}{2}+\frac{a+b}{4}=\frac{a+b}{2}\left(a+b+\frac{1}{2}\right)\ge\sqrt{ab}\left[\left(a+\frac{1}{4}\right)+\left(b+\frac{1}{4}\right)\right]\)\(\ge\sqrt{ab}\left(\sqrt{a}+\sqrt{b}\right)=a\sqrt{b}+b\sqrt{a}\)
CM đẳng thức sau \(\left(\frac{a\sqrt{b}+b\sqrt{a}}{\sqrt{a}+\sqrt{b}}+\frac{a-b}{\sqrt{a}+\sqrt{b}}-\sqrt{ab}\right).\frac{1}{\sqrt{a}+\sqrt{b}}=1\) với \(a\ge0,b\ge0,a\ne b\)
Cho \(a,b\ge0\). Chứng minh \(\frac{a}{\sqrt{b}}+\frac{b}{\sqrt{a}}\ge\sqrt{a}+\sqrt{b}\)
Rút gọn
a)\(2\sqrt{a}+3a\sqrt{4ab^2}-2b\sqrt{16a^5}-2\sqrt{25a}\)(a>0;b>0)
b)\(\frac{\sqrt{a}+\sqrt{b}}{\sqrt{a}+\sqrt{b}}-\frac{\sqrt{a}-\sqrt{b}}{\sqrt{a}+\sqrt{b}}\left(a\ge0;b\ge0;a\ne b\right)\)
c)\(\frac{a\sqrt{a}-b\sqrt{b}}{a-b}-\frac{a-b}{\sqrt{a}-\sqrt{b}}\left(a\ge0;b\ge0;a\ne0\right)\)
Chứng minh:
a)\(\frac{2\sqrt{ab}}{\sqrt{a}+\sqrt{b}}\le\sqrt[4]{ab}\forall a,b>0\)
b)\(\frac{a}{\sqrt{b}}-\sqrt{a}\ge\sqrt{b}-\frac{b}{\sqrt{a}}\forall a,b>0\)
c) Với a>b>0 và m>n (m,n \(\in\)N) chứng minh:
\(\frac{a^m-b^m}{a^m+b^m}>\frac{a^n-b^n}{a^n+b^n}\)
a) Bình phương 2 vế được: \(\frac{4ab}{a+b+2\sqrt{ab}}\le\sqrt{ab}\)
<=> \(4ab\le\sqrt{ab}\left(a+b\right)+2ab\)
<=>\(\sqrt{ab}\left(a+b\right)\ge2ab\)
<=>\(a+b\ge2\sqrt{ab}\)
<=> \(\left(\sqrt{a}-\sqrt{b}\right)^2\ge0\) (luôn đúng)
Vậy \(\frac{2\sqrt{ab}}{\sqrt{a}+\sqrt{b}}\le\sqrt[4]{ab}\forall a,b>0\)
Chứng minh rằng với mọi a,b>0, a khác b:
\(\frac{\frac{\left(a-b\right)^3}{\left(\sqrt{a}+\sqrt{b}\right)^3}-b\sqrt{b}+2a\sqrt{a}}{a\sqrt{a}-b\sqrt{b}}+\frac{3a+3\sqrt{ab}}{b-a}=0\)
Chứng minh \(\frac{a\sqrt{b}+b}{a-b}\cdot\sqrt{\frac{ab+b^2-2\sqrt{ab^3}}{a\cdot\left(a+2\sqrt{b}\right)+b}}:\frac{1}{\sqrt{a}+\sqrt{b}}=b\) với a > b > 0
\(=\frac{\sqrt{b}.\left(a+\sqrt{b}\right)}{\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}-\sqrt{b}\right)}\cdot\sqrt{\frac{\left(\sqrt{ab}-b\right)^2}{\left(a+\sqrt{b}\right)^2}}\cdot\left(\sqrt{a}+\sqrt{b}\right)\)
\(=\frac{\sqrt{b}.\left(a+\sqrt{b}\right)}{\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}-\sqrt{b}\right)}\cdot\frac{\sqrt{b}.\left(\sqrt{a}-\sqrt{b}\right)}{a+\sqrt{b}}\cdot\left(\sqrt{a}+\sqrt{b}\right)\)
\(=b\left(\text{điều phải chứng minh}\right)\)