Những câu hỏi liên quan
H24
Xem chi tiết
GV
Xem chi tiết
NT
4 tháng 1 2018 lúc 9:36

Ta có : 22n = ( 22 )n = 4n mà 4 \(\equiv\)1 ( mod3 )

                             => 4n \(\equiv\)1 ( mod3 ) ( n thuộc N )

=> 4n = 3k + 1 ( k thuộc N )

=> 2 ^ 2 ^ 2n = 23k+1 = 8k . 2 mà 8 \(\equiv\)1 ( mod7 )

                                  => 8k \(\equiv\)1 ( mod7 )

                                 => 2 . 8k \(\equiv\)2 ( mod7 )

Hay 2 ^ 2 ^ 2n \(\equiv\)2 ( mod7 )  => 2 ^ 2 ^ 2n + 5 \(\equiv\)2 - 2 ( mod7 )

Mà 5 \(\equiv\)- 2 ( mod7 )             => 2 ^ 2 ^ 2n + 5 \(\equiv\)0 ( mod7 )

           Vậy 2 ^ 2 ^ 2n + 5 chia hết cho 7 ( dpcm )

Bình luận (0)
NN
Xem chi tiết
BH
19 tháng 8 2019 lúc 22:21

BN thử vào câu hỏi tương tự xem có k?

Nếu có thì bn xem nhé!

Nếu k thì xin lỗi đã làm phiền bn

Hội con 🐄 chúc bạn học tốt!!!

Bình luận (0)
LN
Xem chi tiết
LN
7 tháng 1 2018 lúc 16:46

Ai làm hộ mk ik mk mơn nhìu 😘😘

Bình luận (0)
NT
7 tháng 1 2018 lúc 16:47

^ la gi

Bình luận (0)
DD
12 tháng 4 2019 lúc 20:47

^ là mũ đó,vd:3^2=\(3^2\)

Bình luận (0)
DN
Xem chi tiết
DN
1 tháng 12 2021 lúc 19:44

ai tả lời giúp mình với mình đang cần gấp

Bình luận (0)
 Khách vãng lai đã xóa
OY
11 tháng 8 2022 lúc 9:55

Trong 3 số `2n+1, 2n+2, 2n+3` luôn có một số chia hết cho 3

\(\Rightarrow\left(2n+1\right)\left(2n+2\right)\left(2n+3\right)⋮3\) (1)

Xét \(n⋮2\)

Có: \(2n⋮2,2⋮2\Rightarrow2n+2⋮2\)

\(\Rightarrow\left(2n+1\right)\left(2n+2\right)\left(2n+3\right)⋮2\) (2)

Xét \(n⋮̸2\)

Có: \(2n⋮2\left(dư1\right),1⋮2\left(dư1\right)\Rightarrow2n+1⋮2\)

\(\Rightarrow\left(2n+1\right)\left(2n+2\right)\left(2n+3\right)⋮2\) (3)

Từ \(\left(1\right),\left(2\right),\left(3\right)\Rightarrowđpcm\)

 

Bình luận (0)
VL
Xem chi tiết
DH
25 tháng 6 2017 lúc 10:26

Bài 1:

Ta có:

\(n\left(2n-3\right)-2n\left(n+1\right)=2n^2-3n-\left(2n^2-2n\right)\\ =2n^2-3n-2n^2+2n=5n\)

\(5⋮5\) nên \(5n⋮5\)

Do đó \(n\left(2n-3\right)-2n\left(n+1\right)⋮5\) (đpcm)

Chúc bạn học tốt!!!

Bình luận (0)
DH
25 tháng 6 2017 lúc 10:29

Bài 2:

Theo bài ra ta có:

\(a=5k+4\)

\(\Rightarrow a^2=\left(5k+4\right)^2=25k^2+40k+16\)

\(25⋮5;40⋮5\) ; 16 chia cho 5 dư 1 nên

\(25k^2+40k+16\) chia cho 5 dư 1

Do đó \(a^2\) chia cho 5 dư 1 (đpcm)

Chúc bạn học tốt!!!

Bình luận (0)
NH
25 tháng 6 2017 lúc 10:38

Bài 1 :

\(n\left(2n-3\right)-2n\left(n+1\right)\)

\(=2n^2-3n-2n^2-2n\)

\(=-3n-2,=-5n⋮5\)

\(\Rightarrow n\left(2n-3\right)-2n\left(n+1\right)⋮5\rightarrowđpcm\)

Bài 2 :

ta có :

a chia 5 dư 4 \(\Rightarrow a=5k+4\left(k\in N\right)\)

\(\Rightarrow a^2=\left(5k+1\right)\left(5k+1\right)\)

\(=5k\left(5k+4\right)+4\left(5k+4\right)\)

\(=\left(5k+4\right).5k+5.4k+3.5+1\) chia 5 dư 1

\(\Leftrightarrow a^2\) chia 5 dư 1 \(\rightarrowđpcm\)

Bình luận (3)
NV
Xem chi tiết
H24
23 tháng 8 2015 lúc 17:50

Cho a là số tự nhiênchia 6 dư 2 và b là số tự nhiên chia 6 dư 3. Chứng minh axb chia hết cho 6

Bình luận (0)
DD
Xem chi tiết
LC
2 tháng 10 2019 lúc 22:00

Bài 1: 

Vì a chia cho 3 dư 1 \(\Rightarrow a\equiv1\left(mod3\right)\)

b chia cho 3 dư 2 \(\Rightarrow b\equiv2\left(mod3\right)\)

\(\Rightarrow ab\equiv2\left(mod3\right)\)

Vậy ab chia cho 3 dư 2 

Cách 2: ( hướng dẫn)

a chia 3 dư 1 nên a=3k+1(k thuộc N ) b chia 3 dư 2 nên b=3k+2 ( k thuộc N )

Từ đó nhân ra ab=(3k+1)(3k+2) rồi chứng minh

Bài 2:

Ta có: \(n\left(2n-3\right)-2n\left(n+1\right)\)

\(=2n^2-3n-2n^2-2n\)

\(=-5n\)

Vì \(n\)nguyên \(\Rightarrow-5n⋮5\)

\(\Rightarrow n\left(2n-3\right)-2n\left(n+1\right)⋮5\forall n\in Z\left(đpcm\right)\)

Bình luận (0)
DD
2 tháng 10 2019 lúc 22:03

cảm ơn bạn lê tài bảo châu nhé

Bình luận (0)
DH
Xem chi tiết
NH
7 tháng 1 2016 lúc 8:40

n(n+1)(2n+1) = n(n+1)(n+2+n-1)=n(n+1)(n+2)+(n-1)(n+1)n

ba số liên tiếp chia hết cho 3

tick minh nha

 

Bình luận (0)