phân tích đa thức thành nhân tử:
x^3 + 27x + (x+3)(x-9)
phân tích đa thức thành nhân tử:x^4+x^3+2x^2-x+3
phân tích đa thức thành nhân tử:x3-x2-14x+24
\(x^3-x^2-14x+24\)
\(=x^3+4x^2-5x^2-20x+6x+24\)
\(=\left(x^3+4x^2\right)-\left(5x^2+20x\right)+\left(6x+24\right)\)
\(=x^2\left(x+4\right)-5x\left(x+4\right)+6\left(x+4\right)\)
\(=\left(x^2-5x+6\right)\left(x+4\right)\)
\(=\left(x^2-2x-3x+6\right)\left(x+4\right)\)
\(=\left[x\left(x-2\right)-3\left(x-2\right)\right]\left(x+4\right)\)
\(=\left(x-2\right)\left(x-3\right)\left(x+4\right)\)
phân tích đa thức thành nhân tử:x(y+z)^2-y(z-x)^2+z(x+y)^2-x^3+y^3-z^3-4xyz
x(y+z)^2 - y(z-x)^2 +z(x+y)^2 - x^3 + y^3 - z^3 - 4xyz
=xy^2+2xyz+xz^2-yz^2+2xyz-x^2y+x^2z+2xyz+zy^2-x^3+y^3-z^3-4xyz
=xy^2+xz^2-yz^2-x^2y+x^2z+y^2z-x^3+y^3-z^3+2xyz
=(xy^2+2xyz+xz^2)-x^3-(yz^2+2xyz+x^2y)+y^3+(x^2z+2xyz+y^2z)-z^3
=x[(y+z)^2-x^2)-y[(z+x)^2-y^2]+z[(x+y)^2-z^2]
=x(-x+y+z)(x+y+z)-y(x-y+z)(x+y+z)+z(x+y-z)(x+y+z)
=(x+y+z)[-x^2+xy+xz-xy+y^2-yz+xz+yz-z^2]
=(x+y+z)[-x(x-y-z)-y(x-y-z)+z(x-y-z)]
=(x+y+z)(x-y-z)(z-x-y)
Phân tích đa thức thành nhân tử:
x-\(\sqrt{x}\)-2
\(x-\sqrt{x}-2\\ =x+\sqrt{x}-2\sqrt{x}-2\\ =\sqrt{x}\left(\sqrt{x}+1\right)-2\left(\sqrt{x}+1\right)\\ =\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)\)
Phân tích đa thức sau thành nhân tử:x^2+2(x+1)^2+3(n+2)^2+4(x+3)^2.
Nếu co làm thì phân tích rõ ra nhé!
Phân tích đa thức sau thành nhân tử:x^2+2(x+1)^2+3(n+2)^2+4(x+3)^2.
Nếu co làm thì phân tích rõ ra nhé!
phân tích đa thức thành nhân tử
\(x^3+9^2+27x+27\)
Phân tích đa thức thành nhân tử
27x^3+27x^2+9x+1
-x^3-3x^2-3x-1
- 8+12x-6x^2+x^3
a) \(27x^3+27x^2+9x+1=\left(3x+1\right)^3\)
b) \(-x^3-3x^2-3x-1=-\left(x^3+3x^2+3x+1\right)=-\left(x+1\right)^3\)
c) \(-8+12x-6x^2+x^3=\left(x-2\right)^3\)
phân tích đa thức thành nhân tử:x^11+x+1
=x11-x2+x2+x+1
=x2(x9-1)+(x2+x+1)
=x2[(x3)3-13)+(x2+x+1)
=x2(x3-1)(x6+x3+1)+(x2+x+1)
=x2(x6+x3+1)(x-1)(x2+x+1)+(x2+x+1)
Đặt nhân tử chung là x2+x+1 rồi phá hết ngoặc là xong