Cho A= 1/101 + 1/102 + 1/103 + 1/104 +......+ 1/200
Chứng minh : a, A > 7/12
b,A > 5/8
cho A=1/101+1/102+1/103+...+1/200
Chứng minh rằng:
a)A>7/12
b)A>5/8
Chứng minh: A > 7/12 và A > 5/8 với A = 1/101 + 1/102 + 1/103 + ... + 1/200
Cho A = 1/101 + 1/102 + 1/103 + ... + 1/200 . CMR : a) A > 7/12
b) A > 5/8
sao dễ vậy
a) Ta chọn biểu thức B làm trung gian sao cho A > B, còn B \(\ge\)\(\frac{7}{12}\).
Tách A thành 2 nhóm, mỗi nhóm 50 phân số, rồi thay mỗi phân số trong từng nhóm bằng phân số nhỏ nhất trong nhóm ấy, ta được :
A = \(\left(\frac{1}{101}+\frac{1}{102}+...+\frac{1}{150}\right)+\left(\frac{1}{151}+\frac{1}{152}+...+\frac{1}{200}\right)\)
\(>\frac{1}{150}.50+\frac{1}{200}.50=\frac{1}{3}+\frac{1}{4}=\frac{7}{12}\)
b) Tách A thành bốn nhóm rồi cũng làm như trên, ta được :
A > \(\frac{25}{125}+\frac{25}{150}+\frac{25}{175}+\frac{25}{200}=\left(\frac{1}{5}+\frac{1}{6}+\frac{1}{7}\right)+\frac{1}{8}=\frac{107}{210}+\frac{1}{8}>\frac{1}{2}+\frac{1}{8}=\frac{5}{8}\)
Chứng minh rằng\(A = {1 \over 101}+{1\over 102} +{1\over 103}+{1\over 104}+...+{1\over 200}>{7\over 12}\)
1/ Tính hợp lí :
a/ 259 . 13 + 259 . 86 + 259
b/ 1 – 2 – 3 + 4 + 5 – 6 – 7 + 8 + ... + 101 – 102 – 103 + 104
a) \(259.\left(13+86+1\right)=259.100=25900\)
a/ 259 . 13 + 259 . 86 + 259
= 259 . 13 + 259 . 86 + 259 . 1
= 259 . ( 13 + 86 + 1 )
= 259 . 100
= 25 900
cho A =1/101+1/102+1/103+...+1/200
CHUNG TO RANG
A)A>7/12
B) A>5/8
cho A= 1/101 + 1/102+ 1/103+ ...+1/200
chứng mnh rằng A>7/12, A>5/8
A = \(\dfrac{1}{101}\)+ \(\dfrac{1}{102}\)+\(\dfrac{1}{103}\)+ ... + \(\dfrac{1}{200}\). Chứng minh:
a) A > \(\dfrac{7}{12}\)
b) A > \(\dfrac{5}{8}\)
c) A < \(\dfrac{5}{6}\)
a: A>1/150*50+1/200*50=1/3+1/4=7/12
b: A>7/12
7/12>5/8
=>A>5/8
Cho A=1/101+1/102+1/103+...+1/200
CMR: a. A>7/12
b. A>5/8