cho đường thẳng y=(m-2)x+m+3 (d). Tìm m biết điểm K(-2;1) nằm trên (d)
1. Cho hai điểm M (-1;3) và N (4;1). Tìm điểm K' trên trục hoành M,N,K thẳng hàng
2. Cho hai điểm M (-1;-3) và N (2;2). Tìm điểm P trên trục hoành và điểm Q trên trục tung sao cho M,N,P,Q thẳng hàng
3. Tìm a,b biết đường thẳng y = ax + b đi qua điểm M (0;-3) và cắt đường thẳng y = -x+3 tại điểm N có hoành độ bằng 2
1. Cho hai điểm M (-1;3) và N (4;1). Tìm điểm K' trên trục hoành M,N,K thẳng hàng
2. Cho hai điểm M (-1;-3) và N (2;2). Tìm điểm P trên trục hoành và điểm Q trên trục tung sao cho M,N,P,Q thẳng hàng
3. Tìm a,b biết đường thẳng y = ax + b đi qua điểm M (0;-3) và cắt đường thẳng y = -x+3 tại điểm N có hoành độ bằng 2
Cho đường thẳng y=(m-2)x+m-3(d); m≠2. Tìm m biết:
1) tìm m để hàm số đồng biến (tạo Ox góc nhọn), nghịch biến( tạo Ox góc tù)
2) (d) đi qua A(1;2)
3) (d) tạo với Ox góc 60 độ
4) tìm m biết (d) cắt đường thẳng y=2x-3 tại điểm có hoành độ bằng 3
5) cho m=1. Vẽ đồ thị và tính khoảng cách từ O đến đường thẳng, gọi giao điểm của đồ thị với Ox và Oy là A và B. tính diện tích và chu vi tam giác AOB
1-4 bạn tk ở đây: Cho đường thẳng y=(m-2)x+m-3(d); m≠2. Tìm m biết:1) tìm m để hàm số đồng biến (tạo Ox góc nhọn), nghịch biến( tạo Ox góc... - Hoc24
5. \(m=1\Leftrightarrow y=-x-2\)
PT giao Ox tại A và Oy tại B của đths: \(\left\{{}\begin{matrix}y=0\Rightarrow x=-2\Rightarrow A\left(-2;0\right)\Rightarrow OA=2\\x=0\Rightarrow y=-2\Rightarrow B\left(0;-2\right)\Rightarrow OB=2\end{matrix}\right.\)
Gọi H là chân đường cao từ O tới đths
Áp dụng HTL: \(\dfrac{1}{OH^2}=\dfrac{1}{OA^2}+\dfrac{1}{OB^2}=\dfrac{1}{4}+\dfrac{1}{4}=\dfrac{1}{2}\)
\(\Leftrightarrow OH^2=2\Leftrightarrow OH=\sqrt{2}\)
Vậy k/c từ O đến đt là \(\sqrt{2}\)
Áp dụng PTG: \(AB=\sqrt{OA^2+OB^2}=2\sqrt{2}\)
Vậy \(P_{ABC}=AB+BC+CA=4+2\sqrt{2};S_{ABC}=\dfrac{1}{2}OH\cdot AB=\dfrac{1}{2}\cdot2\sqrt{2}\cdot\sqrt{2}=2\left(đvdt\right)\)
Cho đường thẳng y=(m-2)x+m-3(d); m≠2. Tìm m biết:
1) tìm m để hàm số đồng biến (tạo Ox góc nhọn), nghịch biến( tạo Ox góc tù)
2) (d) đi qua A(1;2)
3) (d) tạo với Ox góc 60 độ
4) tìm m biết (d) cắt đường thẳng y=2x-3 tại điểm có hoành độ bằng 3
5) cho m=1. Vẽ đồ thị và tính khoảng cách từ O đến đường thẳng, gọi giao điểm của đồ thị với Ox và Oy là A và B. tính diện tích và chu vi tam giác AOB
6) tìm điểm cố định mà (d) luôn đi qua
7) tìm m để (d) cắt đường thẳng y=2x-1 tại một điểm trên trục tung
Cho đường thẳng d: y= 2x+3m-4 (m là tham số) 1) Tìm m để d đi qua điểm M(m^2;1) 2) Tìm m để d giao với trục hoành tại điểm có hoành độ lớn hơn 1 3) tìm m để d giao với đường thẳng denta: y=-3x+1-2m tại điểm K(x;y) nằm trên đường tròn tâm O bán kính căn 5
Cho đường thẳng d: y= 2x+3m-4 (m là tham số) 1) Tìm m để d đi qua điểm M(m^2;1) 2) Tìm m để d giao với trục hoành tại điểm có hoành độ lớn hơn 1 3) tìm m để d giao với đường thẳng denta: y=-3x+1-2m tại điểm K(x;y) nằm trên đường tròn tâm O bán kính căn 5
Cho đường thẳng y=(m-2)x+m-3(d); m≠2. Tìm m biết:
1) tìm m để hàm số đồng biến (tạo Ox góc nhọn), nghịch biến( tạo Ox góc tù)
2) (d) đi qua A(1;2)
3) (d) tạo với Ox góc 60 độ
4) tìm m biết (d) cắt đường thẳng y=2x-3 tại điểm có hoành độ bằng 3
\(1,\) Nhọn \(\Leftrightarrow m-2>0\Leftrightarrow m>2\)
Tù \(\Leftrightarrow m-2< 0\Leftrightarrow m< 2\)
\(2,\Leftrightarrow m-2+m-3=2\Leftrightarrow2m-5=2\Leftrightarrow m=\dfrac{7}{2}\)
\(3,\) PT giao Ox tại B và Oy tại C là \(\left\{{}\begin{matrix}y=0\Rightarrow\left(m-2\right)x=3-m\Rightarrow x=\dfrac{3-m}{m-2}\Rightarrow A\left(\dfrac{3-m}{m-2};0\right)\Rightarrow OA=\left|\dfrac{3-m}{m-2}\right|\\x=0\Rightarrow y=m-3\Rightarrow B\left(0;m-3\right)\Rightarrow OB=\left|m-3\right|\end{matrix}\right.\)
(d) tạo với Ox góc 60 độ là góc nhọn \(\Leftrightarrow m-2>0\Leftrightarrow m>2\)
Và \(\tan60^0=\dfrac{OB}{OA}=\left|m-3\right|\cdot\dfrac{\left|m-2\right|}{\left|3-m\right|}=\left|\dfrac{\left(m-3\right)\left(2-m\right)}{m-3}\right|=\left|2-m\right|\)
\(\Leftrightarrow\left|2-m\right|=\sqrt{3}\)
Mà \(m>2\Leftrightarrow2-m< 0\Leftrightarrow2-m=-\sqrt{3}\Leftrightarrow m=2+\sqrt{3}\)
\(4,\) PT hoành độ giao điểm tại hoành độ 3:
\(\left(m-2\right)x+m-3=2x-3\)
Thay \(x=3\Leftrightarrow3m-6+m-3=3\)
\(\Leftrightarrow4m=12\Leftrightarrow m=3\)
Bài 1 : Cho 2 hàm số y= (2m-3)x+m-2 và y=(1-2m)x-m+3 có đồ thị là (d1) và (d2). Tìm m để (d2) cắt trục hoành tại điểm có hoành độ x=4.
Bài 2 : Cho đường thẳng (d) : y=(3k-5)x+k-1
a. tìm k để (d) và 2 đường thẳng y=-2x+3 ; y=x-6 đồng quy tại 1 điểm trên mặt phẳng tọa độ.
b. CM: đồ thị hàm số luôn đi qua 1 điểm cố định với mọi k. tìm điểm cố định ấy.
Cho đường thẳng (d) : y = (m – 2)x + 1
a. Tìm m biết M(– 2 ; 2) thuộc (d)
b. Tìm m biết (d) đi qua điểm N( – 3 ; 4)
c. Tìm m biết (d) cắt trục hoành tại điểm có hoành độ là 5
d. Tìm m biết cắt trục tung tại điểm có tung độ là -2
e. Tìm m biết (d) // (d’) : y = 3x – 1
\(a,M\left(-2;2\right)\in\left(d\right)\Leftrightarrow-2\left(m-2\right)+1=2\Leftrightarrow m=\dfrac{3}{2}\\ b,N\left(-3;4\right)\in\left(d\right)\Leftrightarrow-3\left(m-2\right)+1=4\Leftrightarrow m=1\\ c,\left(d\right)\cap Ox=\left(5;0\right)\Leftrightarrow5\left(m-2\right)+1=0\Leftrightarrow m=\dfrac{9}{5}\\ d,\left(d\right)\cap Oy=\left(0;-2\right)\Leftrightarrow1=-2\Leftrightarrow m\in\varnothing\\ e,\left(d\right)//\left(d'\right)\Leftrightarrow m-2=3\Leftrightarrow m=5\)