Những câu hỏi liên quan
NP
Xem chi tiết
AH
5 tháng 2 2024 lúc 23:20

Lời giải:

$A=9+2.3^2+2.3^3+2.3^4+...+2.3^{2023}$

$A-9=2(3^2+3^3+3^4+...+3^{2023})$

$3(A-9)=2(3^3+3^4+3^5+...+3^{2024})$

$\Rightarrow 3(A-9)-(A-9)=2(3^{2024}-3^2)$

$2(A-9)=2.3^{2024}-18$

$\Rightarrow 2A-18=2.3^{2024}-18$

$\Rightarrow A=3^{2024}\vdots 3^{2023}$ (đpcm)

Bình luận (0)
H24
Xem chi tiết
H24
5 tháng 11 2023 lúc 20:39

tui lớp 8 ko bt làm :)

 

Bình luận (1)
NN
5 tháng 11 2023 lúc 21:01

hảo hán

Bình luận (0)
NT
6 tháng 11 2023 lúc 13:36

Đặt \(A=75\left(4^{2023}+4^{2022}+...+4^2+4+1\right)+25\)

Đặt \(B=4^{2023}+4^{2022}+...+4^2+4+1\)

=>\(4B=4^{2024}+4^{2023}+...+4^3+4^2+4\)

=>\(4B-B=4^{2024}+4^{2023}+...+4^3+4^2+4-4^{2023}-4^{2022}-...-4^2-4-1\)

=>\(3B=4^{2024}-1\)

=>\(B=\dfrac{4^{2024}-1}{3}\)

\(A=75\left(4^{2023}+4^{2022}+...+4^2+4+1\right)+25\)

\(=75\cdot\dfrac{4^{2024}-1}{3}+25\)

\(=25\cdot\left(4^{2024}-1\right)+25\)

\(=25\cdot4^{2024}\)

\(=25\cdot4\cdot4^{2023}=100\cdot4^{2023}⋮100\)

Bình luận (0)
H24
Xem chi tiết
UP
Xem chi tiết
MP
2 tháng 1 2024 lúc 21:07

Tham khảo

\(\text{+)}\)Ta có:\(5\equiv-1\left(mod3\right)\)

\(\Rightarrow5^{2022}\equiv\left(-1\right)^{2022}\left(mod3\right)\left(1\right)\)

\(\text{+)}\)Ta có:\(2\equiv-1\left(mod3\right)\)

\(\Rightarrow2^{2023}\equiv\left(-1\right)^{2023}\left(mod3\right)\left(2\right)\)

Từ \(\left(1\right)\) và \(\left(2\right)\Rightarrow5^{2022}+5^{2023}\equiv0\left(mod3\right)\)

Vậy...

Bình luận (0)
VG
Xem chi tiết
BT
Xem chi tiết
AH
31 tháng 12 2023 lúc 14:01

Biểu thức A viết có vẻ không đúng. Bạn xem lại đề.

Bình luận (0)
ND
Xem chi tiết
TT
28 tháng 10 2023 lúc 15:43

a) Ta có:

\( A = 5+5^2+5^3+\ldots+5^{100} \)

Để chứng minh A chia hết cho 5, ta xét tổng S = \( 5+5^2+5^3+\ldots+5^{100} \) (mod 5).

Ta thấy rằng \( 5 \) chia hết cho 5, \( 5^2 \) chia hết cho 5, \( 5^3 \) chia hết cho 5, và tiếp tục như vậy cho tới \( 5^{100} \).

Vì vậy, ta có: \( S \equiv 0+0+0+\ldots+0 \equiv 0 \) (mod 5).

Do đó, A chia hết cho 5.

Để chứng minh A không chia hết cho 25, ta xét tổng T = \( 5+5^2+5^3+\ldots+5^{100} \) (mod 25).

Ta thấy rằng \( 5 \) không chia hết cho 25, \( 5^2 \) không chia hết cho 25, \( 5^3 \) không chia hết cho 25, và tiếp tục như vậy cho tới \( 5^{100} \).

Vì vậy, ta có: \( T \equiv 5+0+0+\ldots+0 \equiv 5 \) (mod 25).

Do đó, A không chia hết cho 25.

b) Ta có:

\( B = 5+5^2+5^3+\ldots+5^{20} \)

Để chứng minh B chia hết cho 6, ta xét tổng U = \( 5+5^2+5^3+\ldots+5^{20} \) (mod 6).

Ta thấy rằng \( 5 \) chia hết cho 6, \( 5^2 \) không chia hết cho 6, \( 5^3 \) không chia hết cho 6, \( 5^4 \) chia hết cho 6, và tiếp tục như vậy cho tới \( 5^{20} \).

Vì vậy, ta có: \( U \equiv 5+1+1+\ldots+1 \equiv 5 \) (mod 6).

Do đó, B chia hết cho 6.

c) Ta có:

\( C = 5+5^2+5^3+\ldots+5^{2022}+5^{2023} \)

Để chứng minh C không chia hết cho 6, ta xét tổng V = \( 5+5^2+5^3+\ldots+5^{2022}+5^{2023} \) (mod 6).

Ta thấy rằng \( 5 \) chia hết cho 6, \( 5^2 \) không chia hết cho 6, \( 5^3 \) không chia hết cho 6, \( 5^4 \) chia hết cho 6, và tiếp tục như vậy cho tới \( 5^{2022} \) và \( 5^{2023} \).

Vì vậy, ta có: \( V \equiv 5+1+1+\ldots+1 \equiv 2 \) (mod 6).

Do đó, C không chia hết cho 6.

d) Ta có:

\( D = 1+2+2^2+2^3+\ldots+2^{2021} \)

Để chứng minh D chia hết cho 7, ta xét tổng W = \( 1+2+2^2+2^3+\ldots+2^{2021} \) (mod 7).

Ta thấy rằng \( 2 \) không chia hết cho 7, \( 2^2 \) chia hết cho 7, \( 2^3 \) không chia hết cho 7, \( 2^4 \) không chia hết cho 7, \( 2^5 \) không chia hết cho 7, \( 2^6 \) chia hết cho 7, và tiếp tục

mong mn cho minh vai xu :)))))))))))))))))))))))))))))))))

Bình luận (0)
ND
28 tháng 10 2023 lúc 16:03

bạn Tiến Dũng Trương lm sai r

Bình luận (0)
NH
28 tháng 10 2023 lúc 17:37

a, A = 5 + 52 + 53 + ... + 5100

    A = 5. ( 1 + 5 + ...+ 599)

    5 ⋮ 5 ⇒A =  5.(1 + 5 + ...+ 599) ⋮ 5 (1) 

A  = 5 + 52 + 53 + ... + 5100

A  = 5 + 52.( 1 + 5 + 52 + ... + 598)

A = 5 + 25 . ( 1 + 5 + 5+...+ 598)

Vì 25 ⋮ 25 nên 25.(1 + 5 + 52 +... + 598) ⋮ 25 

5 không chia hết cho 25 nên 

A = 5 + 25.( 1 + 5 +...+ 598) không chia hết cho 25 (2)

Kết hợp (1) và (2) ta có:

A ⋮ 5 nhưng không chia hết cho 25 (đpcm)

 

 

 

  

   

Bình luận (0)
BB
Xem chi tiết
AH
27 tháng 11 2023 lúc 18:12

Lời giải:

\(A=2.2022^{2023}+2(1^{2023}+2^{2023}+3^{2023}+...+1010^{2023}+1011^{2023}+1012^{2023}+...+2021^{2023})\)

\(=2.2022^{2023}+2[(1^{2023}+2021^{2023})+(2^{2023}+2019^{2023})+...+(1010^{2023}+1012^{2023})+1011^{2023}]\)

\(=2.2022^{2023}+2.1011^{2023}+2[(1^{2023}+2021^{2023})+(2^{2023}+2019^{2023})+...+(1010^{2023}+1012^{2023})]\)

Dễ thấy: $2.2022^{2023}\vdots 2022; 2.1011^{2023}=2022.1011^{2023}\vdots 2022$

Đối với biểu thức trong ngoặc vuông thì: Nhớ rằng với mọi $n$ lẻ thì $a^n+b^n\vdots a+b$ nên $1^{2023}+2021^{2023}\vdots 2022; 2^{2023}+2019^{2023}\vdots 2022;...; 1010^{2023}+1012^{2023}\vdots 2022$

$\Rightarrow 2[(1^{2023}+2021^{2023})+(2^{2023}+2019^{2023})+....+(1010^{2023}+1012^{2023})]\vdots 2022$

Do đó $A\vdots 2022$

Bình luận (0)
AC
Xem chi tiết
NT
24 tháng 12 2023 lúc 19:54

loading...

 

Bình luận (0)
H24
24 tháng 12 2023 lúc 20:00

   
Bình luận (0)