Những câu hỏi liên quan
AK
Xem chi tiết
ZT
Xem chi tiết
ZT
Xem chi tiết
ZT
Xem chi tiết
ZT
Xem chi tiết
NL
20 tháng 8 2020 lúc 15:45

Sửa đề:

\(C=x^2-4xy+5y^2-10y+6\)

\(C=\left(x^2-4xy+4y^2\right)+\left(y^2-10y+25\right)-19\)

\(C=\left(x-2y\right)^2+\left(y-5\right)^2-19\ge-19\left(\forall x,y\right)\)

Dấu "=" xảy ra khi: \(\hept{\begin{cases}\left(x-2y\right)^2=0\\\left(y-5\right)^2=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x=2y\\y=5\end{cases}}\Rightarrow\hept{\begin{cases}x=10\\y=5\end{cases}}\)

Vậy \(Min_C=-19\Leftrightarrow\hept{\begin{cases}x=10\\y=5\end{cases}}\)

Bình luận (0)
 Khách vãng lai đã xóa
NL
20 tháng 8 2020 lúc 15:48

\(D=x^2-2xy+2y^2-2x-10y+20\)

\(D=\left(x-y\right)^2-2\left(x-y\right)+1+\left(y^2-12y+36\right)-17\)

\(D=\left(x-y-1\right)^2+\left(y-6\right)^2-17\ge-17\left(\forall x,y\right)\)

Dấu "=" xảy ra khi: \(\hept{\begin{cases}\left(x-y-1\right)^2=0\\\left(y-6\right)^2=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x=y+1\\y=6\end{cases}}\Rightarrow\hept{\begin{cases}x=7\\y=6\end{cases}}\)

Vậy \(Min_D=-17\Leftrightarrow\hept{\begin{cases}x=7\\y=6\end{cases}}\)

Bình luận (0)
 Khách vãng lai đã xóa
NL
20 tháng 8 2020 lúc 15:51

\(E=x^2+2y^2-2xy+2x-10y\)

\(E=\left(x^2-2xy+y^2\right)+2\left(x-y\right)+1+\left(y^2-8y+16\right)-17\)

\(E=\left(x-y\right)^2+2\left(x-y\right)+1+\left(y-4\right)^2-17\)

\(E=\left(x-y+1\right)^2+\left(y-4\right)^2-17\ge-17\left(\forall x,y\right)\)

Dấu "=" xảy ra khi: \(\hept{\begin{cases}\left(x-y+1\right)^2=0\\\left(y-4\right)^2=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x=y-1\\y=4\end{cases}\Rightarrow}\hept{\begin{cases}x=3\\y=4\end{cases}}\)

Vậy \(Min_E=-17\Leftrightarrow\hept{\begin{cases}x=3\\y=4\end{cases}}\)

Bình luận (0)
 Khách vãng lai đã xóa
ZT
Xem chi tiết
NB
Xem chi tiết
LM
Xem chi tiết
NT
8 tháng 11 2021 lúc 23:11

b: \(B=x^3-8y^3-x^3+4x-4x+8y^3+2021=2021\)

Bình luận (0)
DN
8 tháng 11 2021 lúc 23:22

Phân tích đa thức sau thành phân tử 

a, 4x³ - 10x² + 2x

b, x² - 3x + 2

Giúp mk vs m.n

Bình luận (1)
DN
8 tháng 11 2021 lúc 23:58

Hình thang ABCD (AB//CD) có các tia phân giác của các góc A và D gặp nhau tại điểm E thuộc cạnh BC. Chứng minh rằng: 

a, AED = 90°

b, AD = AB + CD 

Giúp mình với mọi người :(((

Bình luận (0)
HL
Xem chi tiết
VT
15 tháng 10 2020 lúc 21:02

Bài 1:

a)\(F=x^2+26y^2-10xy+14x-76y+59\)

         \(=\left(x^2-2\cdot x\cdot5y+25y^2\right)+\left(14x-70y\right)+\left(y^2-6x+9\right)+50\)

        \(=[\left(x-5y\right)^2+14\left(x-5y\right)+49]+\left(y-3\right)^2+1\)

          \(=\left(x-5y+7\right)^2+\left(y-3\right)^2+1\ge1\)

 Để Fmin=1 thì y=3;x=8

b)\(H=m^2-4mp+5p^2+10m-22p+28\)

         \(=\left(m^2-2\cdot m\cdot2p+4p^2\right)+\left(10m-20p\right)+\left(p^2-2p+1\right)+27\)

         \(=[\left(m-2p\right)^2+2\cdot\left(m-2p\right)\cdot5+25]+\left(p-1\right)^2+2\)

           \(=\left(m-2p+5\right)^2+\left(p-1\right)^2+2\ge2\)

Để Hmin=2 thì p=1;m=-3

Bình luận (0)
 Khách vãng lai đã xóa