phân tích đa thức thành nhân tử:
xy(x+y)-yz(y+z)+xz(x-z)
Phân tích đa thức thành nhân tử:
xy(x+y)+yz(y+z)+zx(z+x)+3xyz.
Đề sai r bạn phải là xy(x+y)+yz(y+z)+zx(z+x)+2xyz chứ
\(xy\left(x+y\right)+yz\left(y+z\right)+zx\left(z+x\right)+3xyz\)
\(=xy\left(x+y\right)+xyz+yz\left(y+z\right)+xyz+zx\left(z+x\right)+xyz\)
\(=xy\left(x+y+z\right)+yz\left(x+y+z\right)+zx\left(x+y+z\right)\)
\(=\left(xy+yz+zx\right)\left(x+y+z\right)\)
Phân tích thành nhân tử:xy(x-y)-xz(x+y)+yz(2x-y+z)
\(\left(z-y\right)\left(yz+xy-x^2\right)\)
phân tích đa thức thành nhân tử : xy(x+y)+yz(y+z)+xz(x+z)+2xyz
xy(x+y)+yz(y+z)+xz(x+z)+2xyz
= xy(x + y) + yz(y + z) + xyz + xz(x + z) + xyz
= xy(x + y) + yz(y + z + x) + xz(x + z + y)
= xy(x + y) + z(x + y + z)(y + x)
= (x + y)(xy + zx + zy + z²)
= (x + y)[x(y + z) + z(y + z)]
= (x + y)(y + z)(z + x)
phân tích đa thức thành nhân tử:
xy( x-y ) + yz( y-z ) + xz( z-x )
\(xy\left(x-y\right)+yz\left(y-z\right)+xz\left(z-x\right)\)
\(=xy\left(x-y\right)+yz\left[\left(y-x\right)-\left(z-x\right)\right]+xz\left(z-x\right)\)
\(=xy\left(x-y\right)-yz\left(x-y\right)-yz\left(z-x\right)+xz\left(z-x\right)\)
\(=\left(x-y\right)\left(xy-yz\right)-\left(z-x\right)\left(yz-xz\right)\)
\(=\left(x-y\right)\left(xy-yz\right)+\left(z-x\right)\left(xz-yz\right)\)
\(=\left(xy-yz\right)\left(x-y+z-x\right)\)
\(=\left(xy-yz\right)\left(-y+z\right)\)
mơn bn nha ^^
nh sáng nay lên lp thầy chữa bài thì kq nó k như z, cả cách lm nx :v
kq là: ( z - y )( x - z)( y - x )
[ вơ đắйǥ ] вé เςë ⁀ᶜᵘᵗᵉ
Ukm cảm ơn nhé quên mất đoạn cuối vẫn phân tích đc nữa
Phân tích đa thức thành nhân tử:
xy(x-y)-xz(x+z)-yz(2x-y+z)
Phân tích đa thức thành nhân tử xy(x-y) + yz(y-z) + xz(x-z)
xy(x-y)+yz(y-z)+xz(x-z)
=y.[x.(x-y)+z.(y-z)]+xz(x-z)
=y.(x2-xy+zy-z2)+xz.(x-z)
=y.[(x2-z2)+(-xy+zy)]+xz.(x-z)
=y.[(x-z)(x+z)-y.(x-z)]+xz.(x-z)
=y.(x-z)(x+z-y)+xz.(x-z)
=(x-z)[y.(x+z-y)+xz]
=(x-z)(xy+yz-y2+xz)
Phân tích đa thức thành nhân tử:
xy(x+y) + yz(y+z) + xz(x+z)+2xyz
xy(x+y)+yz(y+z)+xz(x+z)+2xyz
= xy(x + y) + yz(y + z) + xyz + xz(x + z) + xyz
= xy(x + y) + yz(y + z + x) + xz(x + z + y)
= xy(x + y) + z(x + y + z)(y + x)
= (x + y)(xy + zx + zy + z2)
= (x + y)[x(y + z) + z(y + z)]
= (x + y)(y + z)(z + x)
xy(x+y)+yz(y+z)+xz(x+z)+2xyz
= xy(x + y) + yz(y + z) + xyz + xz(x + z) + xyz
= xy(x + y) + yz(y + z + x) + xz(x + z + y)
= xy(x + y) + z(x + y + z)(y + x)
= (x + y)(xy + zx + zy + z²)
= (x + y)[x(y + z) + z(y + z)]
= (x + y)(y + z)(z + x)
Phân tích đa thức thành nhân tử
xz ( z - x ) + yz ( y + z ) - xy ( x + y )
tao có \(xz\left(z-x\right)+yz\left(y+z\right)-xy\left(x+y\right)=xz\left(z-x\right)+yz\left(y+x+z-x\right)-xy\left(x+y\right)=xz\left(z-x\right)+yz\left(z-x\right)+yz\left(x+y\right)-xy\left(x+y\right)\)
\(\left(z-x\right)\left(xz+yz\right)+\left(x+y\right)\left(yz-xy\right)=\left(z-x\right)z\left(x+y\right)+\left(x+y\right)y\left(z-x\right)=\left(z-x\right)\left(x+y\right)\left(z+y\right)\)
nếu mình giải khó hiểu thì cho mình xin lỗi nhé
\(xz\left(z-x\right)+yz\left(y+z\right)-xy+\left(x+y\right)\)
\(=xz^2-x^2z+yx\left(y+z\right)-xy\left(x+y\right)\)
\(=xz^2-x^2z+zy^2+z^2y-xy\left(x+y\right)\)
\(=xz^2-x^2z+zy^2+z^2y-x^2y-xy^2\)
P/s: ko chắc
Wrecking Ball giải chưa đúng đâu nha
Nhưng đây là bài lớp 8, bạn mới học lớp 7 nên mình k động viên thui nha ( mình ko có điểm hỏi đáp đâu )
Phân tích đa thức thành nhân tử xy(x+y) + yz(y+z) + xz(x+z) + 2xyz
nhu the nay:
( xy( x + y )+ xyz )+( yz( y + z )+ xyz )+( xz( a +c )+ xyz)
= xy( x+y+z )+ yz( x + y + z )+ xz( x + y + z )
= ( x + y + z)( xy + yz +zx )
xong rui do dung thi ****.