HN

phân tích đa thức thành nhân tử:

xy(x+y)-yz(y+z)+xz(x-z)

B1
14 tháng 8 2017 lúc 15:07

 xy(x+y)+yz(y+z)+xz(x+z)+2xyz 

= xy(x + y) + yz(y + z) + xyz + xz(x + z) + xyz 

= xy(x + y) + yz(y + z + x) + xz(x + z + y) 

= xy(x + y) + z(x + y + z)(y + x) 

= (x + y)(xy + zx + zy + z²) 

= (x + y)[x(y + z) + z(y + z)] 

= (x + y)(y + z)(z + x)

.

.

.

 xy(x+y)+yz(y+z)+xz(x+z)+2xyz 

= xy(x + y) + yz(y + z) + xyz + xz(x + z) + xyz 

= xy(x + y) + yz(y + z + x) + xz(x + z + y) 

= xy(x + y) + z(x + y + z)(y + x) 

= (x + y)(xy + zx + zy + z²) 

= (x + y)[x(y + z) + z(y + z)] 

= (x + y)(y + z)(z + x)

Bình luận (0)

Các câu hỏi tương tự
LT
Xem chi tiết
KY
Xem chi tiết
Xem chi tiết
NK
Xem chi tiết
LC
Xem chi tiết
VT
Xem chi tiết
SM
Xem chi tiết
LH
Xem chi tiết
HN
Xem chi tiết