Phân tích các đa thức sau thành nhân tử: a )3x²-6xy+8x-16y h)9y²-4x²+4x-1
Bài 2. (2,0 điểm): Phân tích các đa thức sau thành nhân tử:
a) 3x² + 6xy
c) x² - 8x + 7
b) x²-2xy + 3x - 6y
d) 4x² - y²
a)\(=3x\left(x+2y\right)\)
c)\(=\left(x-7\right)\left(x-1\right)\)
b)\(=x\left(x-2y\right)+3\left(x-2y\right)=\left(x+3\right)\left(x-2y\right)\)
d)\(=\left(2x\right)^2-y^2=\left(2x-y\right)\left(2x+y\right)\)
\(a,3x^2+6xy=3x\left(x+2y\right)\\ c,x^2-8x+7=\left(x^2-x\right)-\left(7x-7\right)=x\left(x-1\right)-7\left(x-1\right)=\left(x-1\right)\left(x-7\right)\\ b,x^2-2xy+3x-6y=\left(x^2+3x\right)-\left(2xy+6y\right)=x\left(x+3\right)-2y\left(x+3\right)=\left(x+3\right)\left(x-2y\right)\\ d,4x^2-y^2=\left(2x-y\right)\left(2x+y\right)\)
Phân tích đa thức thành nhân tử A. 4x^2-12xy+9y^2-8x+12y B. 3x^2+20x-7 C. (3x-1)^4+2(9y^2-6x+1)+1 D. 2x^3-3x^2+2x-1
a: =(2x-3y)^2-4(2x-3y)
=(2x-3y)(2x-3y-4)
b: =3x^2+21x-x-7
=(x+7)(3x-1)
c: =(3x-1)^4+2(3x-1)^2+1
=[(3x-1)^2+1]^2
d: =2x^3-2x^2-x^2+x+x-1
=(x-1)(2x^2-x+1)
Bài 1 (1,5 diem). Phần tích các đa thức sau thành nhân từ. a 1x ^ 2 + 9y ^ 2 - 16 - 6xy b) 4x ^ 2 - 24y ^ 3 c) x ^ 2 - 8x + 15
\(a,=\left(x-3y\right)^2-16=\left(x-3y-4\right)\left(x-3y+4\right)\\ b,=4\left(x^2-6y^3\right)\\ c,=x^2-3x-5x+15=\left(x-3\right)\left(x-5\right)\)
Bài 1: Phân tích các đa thức sau thành nhân tử
x^3+4x^2+4x-16y^2
\(x^3+4x^2+4x-16y^2\)
\(=\left(x^3+2x^2\right)+\left(2x^2+4x\right)-16y^2\)
\(=x^2.\left(x+2\right)+2x.\left(x+2\right)-16y^2\)
\(=\left(x+2\right).\left(x^2+2x\right)-16y^2\)
\(=x.\left(x+2\right).\left(x+2\right)-\left(4y\right)^2\)
\(=x.\left(x+2\right)^2-\left(4y\right)^2\)
\(=\left[\sqrt{x}.\left(x+2\right)\right]^2-4y^2\)
\(=\left[\sqrt{x}.\left(x+2\right)-4y\right].\left[\sqrt{x}.\left(x+2\right)+4y\right]\)
Tham khảo nhé~
nếu đưa vô căn phải có điều kiện là x > 0
\(x^3+4x^2+4x-16y^2=x\left(x+2\right)^2-\left(4y\right)^2\)
\(=\left(x\sqrt{x}+2\sqrt{x}\right)^2-\left(4y\right)^2=\left(x\sqrt{x}+2\sqrt{x}-4y\right)\left(x\sqrt{x}+2\sqrt{x}+4y\right)\)
phân tích đa thức thành nhân tử bằng phương pháp hệ số bất định
4x^2 - 3y^2 - 4xy - 4x + 16y - 8
3x^2 + y^2 - 2xy +8x - 4y -3
bài 1: phân tích các đa thức sau thành nhân tử.
a, x^2-81
b,4x^2-25
c, x^4-y^4
d, x^2+6xy+9y^2
e,6x-9-x^2
f, x^2 -4x^2 +4y^2 +4xy
g, (a+b)^3 + (a-b)^3
h, (3x+1)^2-(x+1)^2
a) \(x^2-81=\left(x-9\right)\left(x+9\right)\)
b) \(4x^2-25=\left(2x-5\right)\left(2x+5\right)\)
c) \(x^4-y^4=\left(x^2-y^2\right)\left(x^2+y^2\right)=\left(x-y\right)\left(x+y\right)\left(x^2+y^2\right)\)
d) \(x^2+6xy+9y^2=\left(x+3y\right)^2\)
e) \(6x-9-x^2=-\left(x^2-6x+9\right)=-\left(x-3\right)^2\)
f) \(x^2-4x^2+4y^2+4xy=\left(x^2+4xy+4y^2\right)-4x^2=\left(x+2y\right)^2-4x^2\\ =\left(x+2y+2x\right)\left(x+2y-2x\right)=\left(3x+2y\right)\left(2y-x\right)\)
g) \(\left(a+b\right)^3+\left(a-b\right)^3=\left(a+b+a-b\right)\left[\left(a+b\right)^2-\left(a+b\right)\left(a-b\right)+\left(a-b\right)^2\right]\)
\(=2a\left(a^2+2ab+b^2-a^2+b^2+a^2-2ab+b^2\right)=2a\left(a^2+3b^2\right)\)
h) \(\left(3x+1\right)^2-\left(x+1\right)^2=\left(3x+1+x+1\right)\left(3x+1-x-1\right)\\ =\left(4x+2\right)\cdot2x=4x\left(2x+1\right)\)
Phân tích đa thức sau thành nhân tử: a) x^2-4x+4-y^2 b) x^2+6x-4y^2+9 c) x^2-6xy+9y^2-36
a) = (x - 2)2 - y2
= (x - 2 - y)(x + 2 + y)
b) = (x^2 + 6x + 9) - (2y)^2
= (x + 3)2 - (2y)2
= (x - 2y + 3)(x + 2y + 3)
c) = (x - 3y)2 - 62
= (x - 3y - 6)(x - 3y + 6)
Phân tích các đa thức sau thành nhân tử
a)x^2.(y-z)+y^2.(z-x)+z^2.(x-y)
b) (2x+5)^2-(x-9)^2
c)(2x+3)^2- 25.(x-1)^2
d)(4x^2-3x-18)^2-(4x^2+3x)^2
e)-4x^2+12xy-9y^2+25
f) 8x^2-2
g)8x^3-64
h)125x^3+1
Phân tích các đa thức sau thành nhân tử
a) \(^{ }3xy-6xy^2\)
b) \(^{ }3x^3+6x^2+3x\)
c) \(^{ }x^3-x^2+2\)
d) \(^{ }x^2+4x+4-y^2\)
e) \(^{ }x^3+4x^2+4x\)
f) \(^{ }x^2+2x+1-9y^2\)
g) \(^{ }6x^2-12x\)
h) \(^{ }x^3+2x^2-x\)
i) \(^{ }x^2-2xy+y^2-9\)
j) \(^{ }x^2+x-6\)
k) \(^{ }2x^3+2x^2y-4xy^2\)
l) \(^{ }x^3-4x^2-12x+27\)
a) \(3xy-6xy^2=3xy\left(1-2y\right)\)
b) \(3x^3+6x^2+3x=3x\left(x^2+2x+1\right)=3x\left(x+1\right)^2\)
c) \(x^3-x^2+2\)
d) \(x^2+4x+4-y^2=\left(x^2+4x+4\right)-y^2=\left(x+2\right)^2-y^2=\left(x-y+2\right)\left(x+y+2\right)\)
e) \(x^3+4x^2+4x=x\left(x^2+4x+4\right)=x\left(x+2\right)^2\)
f) \(x^2+2x+1-9y^2=\left(x+1\right)^2-\left(3y\right)^2=\left(x-3y+1\right)\left(x+3y+1\right)\)
g) \(6x^2-12x=6x\left(x-2\right)\)
h) \(x^3-2x^2+x=x\left(x^2-2x+1\right)=x\left(x-1\right)^2\)
i) \(x^2-2xy+y^2-9=\left(x-y\right)^2-3^2=\left(x-y-3\right)\left(x-y+3\right)\)
k) \(2x^3+2x^2y-4xy^2=2x\left(x^2+xy-2y^2\right)\)
l) \(x^3-7x^2+9x+3x^2-21x+27=x\left(x^2-7x+9\right)+3\left(x^2-7x+9\right)=\left(x+3\right)\left(x^2-7x+9\right)\)