Những câu hỏi liên quan
NH
Xem chi tiết
NA
Xem chi tiết
TT
15 tháng 8 2020 lúc 17:22

a) \(2.\left(x+5\right)-x^2-5x=0\)

\(\Leftrightarrow2.\left(x+5\right)-x.\left(x+5\right)=0\)

\(\Leftrightarrow\left(x+5\right)\left(2-x\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x+5=0\\2-x=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-5\\x=2\end{cases}}\)

Vậy \(S=\left\{-5,2\right\}\)

b) \(x^3-5x^2-4x+20=0\)

\(\Leftrightarrow x^2\left(x-5\right)-4.\left(x-5\right)=0\)

\(\Leftrightarrow\left(x-5\right)\left(x^2-4\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x-5=0\\x^2-4=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=5\\x=\pm2\end{cases}}\)

Vậy \(S=\left\{5,\pm2\right\}\)

c) \(\left(2x-1\right)^2-\left(x+3\right)^2=0\)

\(\Leftrightarrow\left(2x-1-x-3\right)\left(2x-1+x+3\right)=0\)

\(\Leftrightarrow\left(x-4\right)\left(3x+2\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x-4=0\\3x+2=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=4\\x=-\frac{3}{2}\end{cases}}\)

Vậy \(S=\left\{4,-\frac{3}{2}\right\}\)

Bình luận (0)
 Khách vãng lai đã xóa
NA
Xem chi tiết
PN
15 tháng 8 2020 lúc 15:42

\(a,2\left(x+5\right)-x^2-5x=0\)

\(< =>2x+10-x^2-5x=0\)

\(< =>-x^2-3x+10=0\)

\(< =>-\left(x^2+3x+\frac{9}{4}\right)+\frac{49}{4}=0\)

\(< =>-\left(x+\frac{3}{2}\right)^2=-\frac{49}{4}\)

\(< =>\left(x+\frac{3}{2}\right)^2=\frac{49}{4}< =>\orbr{\begin{cases}x+\frac{3}{2}=\sqrt{\frac{49}{4}}\\x+\frac{3}{2}=-\sqrt{\frac{49}{4}}\end{cases}}\)

\(< =>\orbr{\begin{cases}x=\frac{7}{2}-\frac{3}{2}=\frac{4}{2}=2\\x=-\frac{7}{2}-\frac{3}{2}=-\frac{10}{2}=-5\end{cases}}\)

b, Đật x = y+5/3 khi đó phương trình trở thành 

\(y^3-\frac{37}{3}y+\frac{476}{27}=0\)

Đặt \(y=u+v\)sao cho uv=37/9 thế vào ta được phương trình mới sau ta được

\(u^3+v^3+\left(3uv-\frac{37}{3}\right)\left(u+v\right)+\frac{426}{27}=0\)

Khi đó ta có hệ sau : \(\hept{\begin{cases}u^3+v^3=-\frac{426}{27}\\u^3v^3=\frac{50653}{729}\end{cases}}\)

Theo Vi ét u^3 và v^3 là 2 nghiệm của pt \(x^2-\frac{426}{27}x+\frac{50653}{729}=0\)

Đến đây delta phát rồi tìm ngược lại là xong :))))

mình dùng cardano nhưng làm trong nháp xong gửi nên chắc chắc bạn sẽ không hiểu được :V

Bình luận (0)
 Khách vãng lai đã xóa
PN
15 tháng 8 2020 lúc 16:13

làm luôn câu cuối nhé ^^

\(\left(2x-1\right)^2-\left(x+3\right)^2=0\)

\(\Leftrightarrow\left(4x^2-4x+1\right)-\left(x^2+6x+9\right)=0\)

\(\Leftrightarrow4x^2-4x+1-x^2-6x-9=0\)

\(\Leftrightarrow3x^2-10x-8=0\)

\(\Leftrightarrow3\left(x^2-\frac{10}{3}x+\frac{25}{9}\right)-\frac{147}{9}=0\)

\(\Leftrightarrow3\left(x-\frac{5}{3}\right)^2=\frac{147}{9}\Leftrightarrow\left(x-\frac{5}{3}\right)^2=\frac{147}{27}\)

\(\Leftrightarrow\orbr{\begin{cases}x-\frac{5}{3}=\sqrt{\frac{147}{27}}\\x-\frac{5}{3}=-\sqrt{\frac{147}{27}}\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=\sqrt{\frac{147}{27}}+\frac{5}{3}\\x=-\sqrt{\frac{147}{27}}+\frac{5}{3}\end{cases}}\)

Bình luận (0)
 Khách vãng lai đã xóa
NA
15 tháng 8 2020 lúc 16:53

bạn có thể giải rõ giúp mình phần b được không ?

Bình luận (0)
 Khách vãng lai đã xóa
H24
Xem chi tiết
NM
20 tháng 10 2021 lúc 7:20

\(a,\Leftrightarrow\left(x-4\right)\left(x^2+5\right)>0\\ \Leftrightarrow x-4>0\left(x^2+5\ge5>0\right)\\ \Leftrightarrow x>4\\ b,\Leftrightarrow\left(x-y\right)\left(3x-5\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=y\left(vô.lí.do.x\ne y\right)\\x=\dfrac{5}{3}\left(tm\right)\end{matrix}\right.\\ \Leftrightarrow S=x^2-x=\dfrac{25}{9}-\dfrac{5}{3}=\dfrac{10}{9}\)

Bình luận (0)
NN
Xem chi tiết
NT
27 tháng 3 2020 lúc 10:55

a) Ta có: \(x^2-9x+20=0\)

\(\Leftrightarrow x^2-5x-4x+20=0\)

\(\Leftrightarrow x\left(x-5\right)-4\left(x-5\right)=0\)

\(\Leftrightarrow\left(x-5\right)\left(x-4\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-5=0\\x-4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=5\\x=4\end{matrix}\right.\)

Vậy: x∈{4;5}

b) Ta có: \(x^3-4x^2+5x=0\)

\(\Leftrightarrow x\left(x^2-4x+5\right)=0\)(1)

Ta có: \(x^2-4x+5\)

\(=x^2-4x+4+1=\left(x-2\right)^2+1\)

Ta có: \(\left(x-2\right)^2\ge0\forall x\)

\(\Rightarrow\left(x-2\right)^2+1\ge1>0\forall x\)

hay \(x^2-4x+5>0\forall x\)(2)

Từ (1) và (2) suy ra x=0

Vậy: x=0

c) Sửa đề: \(x^2-2x-15=0\)

Ta có: \(x^2-2x-15=0\)

\(\Leftrightarrow x^2+3x-5x-15=0\)

\(\Leftrightarrow x\left(x+3\right)-5\left(x+3\right)=0\)

\(\Leftrightarrow\left(x+3\right)\left(x-5\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+3=0\\x-5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=5\end{matrix}\right.\)

Vậy: x∈{-3;5}

d) Ta có: \(\left(x^2-1\right)^2=4x+1\)

\(\Leftrightarrow x^4-2x^2+1-4x-1=0\)

\(\Leftrightarrow x^4-2x^2-4x=0\)

\(\Leftrightarrow x\left(x^3-2x-4\right)=0\)

\(\Leftrightarrow x\left(x^3+2x^2+2x-2x^2-4x-4\right)=0\)

\(\Leftrightarrow x\cdot\left[x\left(x^2+2x+2\right)-2\left(x^2+2x+2\right)\right]=0\)

\(\Leftrightarrow x\cdot\left(x^2+2x+2\right)\cdot\left(x-2\right)=0\)(3)

Ta có: \(x^2+2x+2\)

\(=x^2+2x+1+1=\left(x+1\right)^2+1\)

Ta có: \(\left(x+1\right)^2\ge0\forall x\)

\(\Rightarrow\left(x+1\right)^2+1\ge1>0\forall x\)

hay \(x^2+2x+2>0\forall x\)(4)

Từ (3) và (4) suy ra

\(\left[{}\begin{matrix}x=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\end{matrix}\right.\)

Vậy: x∈{0;2}

Bình luận (0)
 Khách vãng lai đã xóa
NK
Xem chi tiết
LD
23 tháng 6 2017 lúc 9:52

Ta có : 5x + 20 - x2 - 4x = 0 

=> 5(x + 4) - (x2 + 4x) = 0

=> 5(x + 4) - x(x + 4) = 0

=> (x + 4) ( 5 - x) = 0

\(\Rightarrow\orbr{\begin{cases}x+4=0\\x-5=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=-4\\x=5\end{cases}}\)

b) tương tự nhá 

Bình luận (0)
NK
Xem chi tiết
NK
23 tháng 6 2017 lúc 10:11

a)   5x + 20 - x2 -4x =0

<=> (5x+20)- (x2+4x)=0

<=>5(x+4)-x(x+4)=0

<=>(5-x)(x+4)=0 

<=> 5-x=0 hoặc x+4=0 

<=> x=5 hoặc x=-4

b) x2+3x -(2x+6)=0

<=>(x2+3x)-2(x+3)=0

<=>x(x+3)-2(x+3)=0

<=>(x-2)(x+3)=0

<=> x-2=0 hoặc x+3=0 

<=>x=2 hoặc x=-3

Bình luận (0)
NK
Xem chi tiết
VT
23 tháng 6 2017 lúc 10:26

\(a.5x+20-x^2-4x=0\)

\(\Leftrightarrow5\left(x+4\right)-x\left(x+4\right)=0\)

\(\Leftrightarrow\left(5-x\right)\left(x+4\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}5-x=0\\x+4=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=5\\x=-4\end{cases}}\)

\(b.x^2+3x-\left(2x+6\right)=0\)

\(\Leftrightarrow x^2+3x-2x-6=0\)

\(\Leftrightarrow x\left(x+3\right)-2\left(x+3\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x+3\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x-2=0\\x+3=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=2\\x=-3\end{cases}}\)

Bình luận (0)
LL
Xem chi tiết
ML
16 tháng 8 2015 lúc 20:30

a)x2-20-x=0

<=>(x2-5x)+(4x-20)=0

<=>x(x-5)+4(x-5)=0

<=>(x-5)(x+4)=0

<=>x-5=0 hoặc x+4=0

<=>x=5 hoặc x=-4

b)(2x+3)2-(4x2-9)=0

<=>(2x+3)(2x+3)-(2x-3)(2x+3)=0

<=>(2x+3)(2x+3-2x+3)=0

<=>(2x+3).6=0

<=>2x+3=0

<=>2x=-3

<=>x=-1,5

c)(2x2+5x+3):(x+1)=4x-5

<=>2x2+5x+3=(4x-5)(x+1)

<=>2x2+5x+3=4x2-x-5

<=>4x2-x-5-2x2-5x-3=0

<=>2x2-6x-8=0

<=>x2-3x-4=0

<=>(x2-4x)+(x-4)=0

<=>x(x-4)+(x-4)=0

<=>(x-4)(x+1)=0

<=>x+1=0 hoặc x-4=0

<=>x=-1 hoặc x=4

Bình luận (0)