Những câu hỏi liên quan
BB
Xem chi tiết
NV
14 tháng 1 2019 lúc 20:23

Biến đổi vế trái, ta có:

VT= x3+y3+z3

= x3+3x2y+3xy2+y3-3x2y-3xy2+z3

=(x+y)3-3xy(x+y)+z3 = VP

Vậy đẳng thức dược chứng minh

Bình luận (0)
PL
Xem chi tiết
HN
9 tháng 8 2016 lúc 7:59

Ta có \(x^3+y^3+z^3=3xyz\)

\(\Leftrightarrow\left(x+y\right)^3+z^3-3xy\left(x+y\right)-3xyz=0\)

\(\Leftrightarrow\left(x+y+z\right)\left(x^2+y^2+z^2+2xy-xz-yz\right)-3xy\left(x+y+z\right)=0\)

\(\Leftrightarrow\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)=0\)

\(\Leftrightarrow\left(x+y+z\right)\left[\left(x^2-2xy+y^2\right)+\left(y^2-2yz+z^2\right)+\left(z^2-2zx+x^2\right)\right]=0\)(Nhân hai vế với 2)

\(\Leftrightarrow\left(x+y+z\right)\left[\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\right]=0\)

Tới đây bạn xét hai trường hợp nhé :)

Bình luận (0)
DT
9 tháng 8 2016 lúc 7:41

(x+y+z)((X+Y)^2-Z(X+Y))-3XY(X+Y+Z)

=(X+Y+Z)(X^2+2XY+Y^2-XZ-YZ-3XY)

=(X+Y+Z)(X^2+Y^2+Z^2-XZ-YZ-XY)

Bình luận (0)
H24
9 tháng 8 2016 lúc 8:12

x^3+y^3+z^3-3xy(x+y+z)=0

x^3+y^3+z^3-3xy*xyz=0

3xyz-3xyz=0

chuc ban thanh cong

Bình luận (0)
OT
Xem chi tiết
DP
Xem chi tiết
VT
31 tháng 8 2016 lúc 8:41

Ta có : Thêm \(-3xyz\) vào 2 vế , ta có :

\(VT=x^3+y^3+z^3-3xyz\)

       \(=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)\left(1\right)\)

\(VP=\left(x+y\right)^3-3xy\left(x+y\right)+z^3-3xyz\)

\(=\left(x+y+z\right)\left(x^2+2xy+y^2-xz-yz+z^2\right)-3xy\left(x+y+z\right)\)

\(=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-xz\right)\left(2\right)\)

Từ ( 1 ) và ( 2 ) \(\Rightarrow x^3+y^3+x^3=\left(x+y\right)^3-3xy\left(x+y\right)+z^3\)

\(\Rightarrowđpcm\)

 

Bình luận (0)
DP
31 tháng 8 2016 lúc 8:34

Cho sủa đề nha : \(x^3+y^3+x^3=\left(x+y\right)^3-3xy\left(x+y\right)+z^3\)

Bình luận (0)
NN
Xem chi tiết
LA
10 tháng 7 2016 lúc 19:56

1) Ta có: \(x^3+y^3+z^3=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)\)\(3xyz\)

Mà x+y+z=0

=> \(x^3+y^3+z^3=3xyz\)

( ko thể = 3xy2)

2)  Ta có: \(A=\left(n+1\right)\left(n+2\right)\left(n+3\right)\left(n+4\right)+1\) 

                    = \(\left(n+1\right)\left(n+4\right)\cdot\left(n+2\right)\left(n+3\right)+1\)

                     = \(\left(n^2+5n+4\right)\left(n^2+5n+6\right)+1\)

Đặt t= \(n^2+5n+5\)

=> A= \(\left(t-1\right)\left(t+1\right)+1=t^2-1+1=t^2\) là 1 số chính phương.

Bình luận (0)
NP
Xem chi tiết
H24
Xem chi tiết
QD
11 tháng 7 2017 lúc 10:19

c)\(x^3+3xy+y^3\)

\(=x^3+y^3+3xy=\left(x+y\right)\left(x^2-xy+y^2\right)+3xy\)

\(=\left(x^2-xy+y^2\right)+3xy\)

\(=x^2-xy+y^2+3xy\)

\(=x^2+2xy+y^2=\left(x+y\right)^2\)

\(=1^2=1\)

Bình luận (3)
QD
11 tháng 7 2017 lúc 10:23

d) \(x^3-3xy-y^3\)

\(=\left(x-y\right)\left(x^2+xy+y^2\right)-3xy\)

\(=\left(x^2+xy+y^2\right)-3xy\)

\(=x^2-2xy+y^2\)

\(=\left(x-y\right)^2\)

\(=1^2=1\)

@Đoàn Đức Hiếu lm a,b đi nhé

Bình luận (0)
TH
Xem chi tiết
H24
29 tháng 10 2016 lúc 15:58

là (x+y+z)3-x3-y3-z3 hả

Bình luận (0)
H24
29 tháng 10 2016 lúc 16:13

(x+y+z)3-x3-y3-z3

=[ (x+y+z)3-z3] - (x3+y3)

=(x+y+z-z)(x2+y2+z2+2xy+2yz+2zx+xz+yz+z2+z2) -(x+y)(x2-xy+y2)

=(x+y)(x2+y2+3z2+2xy+3yz+3zx -x2-y2+xy)

=(x+y)(3z2+3yz+3xy+3zx)

=3(x+y)[ z(y+z)  +  x(y+z) ]

=3(x+y)(z+x)(y+z)

Bình luận (0)
PL
10 tháng 6 2018 lúc 10:18

a, x^4 - 5x^2 + 4

= x^4 - 4x^2- x+ 4

= x^2  . (x^2 - 4) - (x^2 - 4)

= (x^2 - 4) . (x^2 - 1)

= (x - 2) . (x + 2) . (x - 1) . (x + 1)

Bình luận (0)
TT
Xem chi tiết
PV
14 tháng 2 2016 lúc 13:01

Xet ve phai :x^3+y^3+3x^2y+3xy^2-3x^2y-3xy^2+z^3

       <=>x^3+y^3+z^3=ve trai 

Xong

Bình luận (0)