Những câu hỏi liên quan
H24
Xem chi tiết
NT
12 tháng 11 2023 lúc 9:33

\(A=1\cdot2+2\cdot3+...+n\left(n+1\right)\)

=>\(3\cdot A=1\cdot2\cdot3+2\cdot3\cdot3+...+3n\left(n+1\right)\)

=>\(3A=1\cdot2\cdot3+2\cdot3\cdot\left(4-1\right)+...+n\left(n+1\right)\left[\left(n+2\right)-\left(n-1\right)\right]\)

=>\(3A=1\cdot2\cdot3-1\cdot2\cdot3+2\cdot3\cdot4-2\cdot3\cdot4+...+n\left(n+1\right)\left(n-1\right)-n\left(n+1\right)\left(n-1\right)+n\left(n+1\right)\left(n+2\right)\)

=>\(3A=n\left(n+1\right)\left(n+2\right)\)

=>\(A=\dfrac{n\left(n+1\right)\left(n+2\right)}{3}\)

Bình luận (0)
BT
12 tháng 11 2023 lúc 9:32

Ta có : A = 1.2 + 2.3 + 3.4 + … + n.(n + 1)

⇒3A = 1.2.(3-0)+2.3.(4-1)+3.4.(5-2).....n.(n+1).[(n+2)-(n-1)]

⇒3A = 1.2.3-0.1.2+2.3.4-1.2.3+3.4.5-2.3.4+4.5.6-3.4.5+....+n.(n+1)(n+2)-(n-1)n(n+1)

⇒3A = (1.2.3-1.2.3)+(2.3.4-2.3.4)+....+[(n-1).n.(n+1)-(n-1)n(n+1)]+n.(n+1)(n+2)

⇒3A = n.(n+1)(n+2)

⇒A = n.(n+1)(n+2) / 3 

Bình luận (0)
TT
Xem chi tiết
TH
Xem chi tiết
MT
13 tháng 1 2016 lúc 5:21

 

D = 1.2 + 2.3+ 3.4 +...+ 99.100

=>3D=1.2.3+2.3.3+3.4.3+...+99.100.3

=1.2.(3-0)+2.3.(4-1)+3.4.(5-2)+....+99.100.(101-98)

=1.2.3-0.1.2+2.3.4-1.2.3+3.4.5-2.3.4+...+99.100.101-98.99.100

=99.100.101-0.1.2

=99.100.101

=999900

=>D=999900:3=333300

 

Dn = 1.2 + 2.3 + 3.4 +...+ n (n +1)

=>3Dn=1.2.3+2.3.3+3.4.3+...+n(n+1).3

=1.2.(3-0)+2.3.(4-1)+3.4.(5-2)+...+n.(n+1).[(n+2)-(n-1)]

=1.2.3-0.1.2+2.3.4-1.2.3+2.3.4-2.3.4+....+n(n+1)(n+2)-(n-1)n(n+1)

=n.(n+1).(n+2)-0.1.2

=n.(n+1)(n+2)

=>Dn=n.(n+1)(n+2):3

 =>điều cần chứng minh

Bình luận (0)
TA
Xem chi tiết
LK
24 tháng 6 2018 lúc 12:36

......................?

mik ko biết

mong bn thông cảm 

nha ................

Bình luận (0)
TT
Xem chi tiết
LG
25 tháng 8 2018 lúc 16:50

có 2 cách bạn ạ 

Ta thấy mỗi số hạng của tổng trên là tích của hai số tự nhên liên tiếp, khi đó: 

Gọi a1 = 1.2 → 3a1 = 1.2.3 → 3a= 1.2.3 - 0.1.2
      a2 = 2.3 → 3a2 = 2.3.3 → 3a= 2.3.4 - 1.2.3
      a3 = 3.4 → 3a3 = 3.3.4 → 3a3 = 3.4.5 - 2.3.4
      …………………..
      an-1 = (n - 1)n → 3an-1 =3(n - 1)n → 3an-1 = (n - 1)n(n + 1) - (n - 2)(n - 1)n
      an = n(n + 1) → 3an = 3n(n + 1) → 3an = n(n + 1)(n + 2) - (n - 1)n(n + 1)

Cộng từng vế của các đẳng thức trên ta có:

3(a1 + a2 + … + an) = n(n + 1)(n + 2)

học tốt 

Bình luận (0)
LG
25 tháng 8 2018 lúc 16:50

cách 2

Ta có

3A = 1.2.3 + 2.3.3 + … + n(n + 1).3 = 1.2.(3 - 0) + 2.3.(3 - 1) + … + n(n + 1)[(n - 2) - (n - 1)] = 1.2.3 - 1.2.0 + 2.3.3 - 1.2.3 + … + n(n + 1)(n + 2) - (n - 1)n(n + 1) = n(n + 1)(n + 2) 

* Tổng quát hoá ta có:

k(k + 1)(k + 2) - (k - 1)k(k + 1) = 3k(k + 1). Trong đó k = 1; 2; 3; …

Ta dễ dàng chứng minh công thức trên như sau:

k(k + 1)(k + 2) - (k - 1)k(k + 1) = k(k + 1)[(k + 2) - (k - 1)] = 3k(k + 1)

tham khảo trên mạng có cả !!

Bình luận (0)
TL
Xem chi tiết
H24
12 tháng 9 2015 lúc 16:03

3S= 1.2.(3-0)+ 2.3.(4-1)+...+ n.(n+1).[(n+2)-(n-1)] 
=[1.2.3+ 2.3.4+...+ (n-1)n(n+1)+ n(n+1)(n+2)]- [0.1.2+ 1.2.3+...+(n-1)n(n+1)] 
=n(n+1)(n+2) 
=>S 

Bình luận (0)
MU
12 tháng 9 2015 lúc 16:06

Nguyễn Đình Phương giống cn gái tek?

Bình luận (0)
H24
Xem chi tiết
PL
Xem chi tiết
HH
11 tháng 9 2015 lúc 16:14

cau hỏi tương tự ko có mà!!!!!!!!!!!!!!!!!!!!!!!!!!!!

Bình luận (0)
VK
23 tháng 1 2022 lúc 10:53

3C=1.2.3+2.3.(4-1)+3.4.(5-2)+...+2014.2015.(2016-2013)

3C=2014.2015.2016

C=2014.2015.2016:3

Bình luận (0)
 Khách vãng lai đã xóa
DH
Xem chi tiết
NK
22 tháng 11 2021 lúc 10:45

Tham khảo:

https://olm.vn/hoi-dap/detail/7327860996.html

Bình luận (0)
TC
22 tháng 11 2021 lúc 10:47

Ta có:

\(3A=1.2.3+2.3.3+3.4.3+....+n\left(n+1\right).3\)

\(\Leftrightarrow3A=1.2.3+2.3.\left(4-1\right)+3.4.\left(5-2\right)+...+n\left(n+1\right)\left[\left(n+2\right)-\left(n-1\right)\right]\)

   \(\Leftrightarrow3A=1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+...+n\left(n+1\right)\left(n+2\right)-\left(n-1\right)n\left(n+1\right)\)

\(\Leftrightarrow3A=n\left(n+1\right)\left(n+2\right)\)

\(\Rightarrow A=\dfrac{n\left(n+1\right)\left(n+2\right)}{3}\)

 

Bình luận (0)