Những câu hỏi liên quan
NA
Xem chi tiết
TY
23 tháng 12 2021 lúc 21:19

khó và khó

Bình luận (0)
LA
Xem chi tiết
TN
22 tháng 12 2021 lúc 21:51

tôi làm luôn nhé ko ghi đề bài

A=2+(2^2+2^3+2^4)+....+(2^99+2^100+2^101)

A=2+2^2.(1+2+2^2)+...+2^99.(1+2+2^2)

A=2+2^2.7+...+2^99.7

A=2+(2^2+...+2^99).7 ko chia hết cho 7 

Vậy A :7 thì dư 2

Bình luận (0)
PT
Xem chi tiết
PS
1 tháng 1 2019 lúc 16:21

a,Ta thấy A là tổng của các số hạng có cơ số giống nhau và có số mũ là các STN liên tiép từ 1 đến 100

số số hạng của tổng A là 100 số hạng

Cứ 2 số hạng ta nhóm thành 1 nhóm ta có

100÷

Bình luận (0)
PS
1 tháng 1 2019 lúc 16:35

mk làm tiếp mk ấn nhầm

100:2=50 nhóm

A=(2+2^2)+(2^3+2^4)+...+(2^99+2^100)

A=2(1+2)+2^3(1+2)+...+2^99(1+2)

A=2×3+2^3×3+...+2^99×3

A=(2+2^3+...+2^99)×3

Mà 3 chia hết cho 3

Suy ra (2+2^3+...+2^99)×3 chia hết cho 3

=》A chia hết cho 3

Vậy A chia hết cho 3

c,A=2+2^2+...+2^99+2^100

2A=2(2+2^2+...+2^99+2^100)

2A=2^2+2^3+.,.+2^100+2^101

2A-A=(2^2+2^3+...+2^100+2^101)-(2+2^2+...+2^100)

A=2^2+...+2^101-2-2^2-...-2^100

A=2^101-2

=》2^101-2<2^101

=》A<2^101

Vậy A<2^101

Bình luận (0)
NK
Xem chi tiết
DA
10 tháng 12 2023 lúc 10:43

.............

Bình luận (0)
TV
Xem chi tiết
NH
22 tháng 3 2017 lúc 17:51

1)Ta thấy nếu số đó công với 4 thì chia hết cho cả 3 số

Gọi số phải tìm là A

Ta có A + 4 chia hết cho 5 , 7 , 9

Mà A nhỏ nhất nên A + 4 = 5 . 7 . 9 = 315

Do đó A = 315 - 4 = 311

2)a)Ta có S = 2^1 + 2^2 +2^3 +...+ 2^100

S = ( 2^1 + 2^2 + 2^3 +2^4 ) +...+( 2^97 + 2^98 + 2^99 + 2^100 )

S = 1( 2^1 + 2^2 + 2^3 + 2^4 ) +...+ 2^96( 2^1 + 2^2 + 2^3 + 2^4 )

S = 1.30 +...+2^96.30

S = ( 1 +...+2^96 )30

Vì 30 chia hết cho 15 nên ( 1 +...+2^96 )30 chia hết cho 15

Hay S chia hết cho 15

b) Vì S cha hết cho 30 nên S chia hết cho 10

Suy ra S có tận cùng là 0

c) S = 2^1 + 2^2 + 2^3 +...+2^100

2S = 2^2 + 2^3 + 2^4 +...+ 2^101

2S - S =( 2^2 + 2^3 +...+ 2^101 ) - ( 2^1 + 2^2 + ... + 2^100 )

S = 2^101 - 2^1

S = 2^101 - 2

Bình luận (0)
HQ
22 tháng 3 2017 lúc 17:51

1. 158

2a. 0 ( doan nha )

b.S = ( 2 + 2^2 +2^3+2^4) + ( 2^5 + 2^6 + 2^7 + 2^8 ) +...+ ( 2^97 + 2^ 98 + 2^99 +2^100 )

      = 2.( 1+2+2^2+2^3 ) + 2^5. ( 1+2+2^2+2^3)+2^97.( 1+2+2^2+2^3)

      = 2.15+2^5.15+...+2^97.15

      = 15.(2+2^5+...+2^97) chia het 15

c.2^101-2^1

3. chiu !

Bình luận (0)
TV
5 tháng 11 2017 lúc 9:38

Ta thấy A gồm có 99 số hạng nên ta nhóm mỗi nhóm 3 số hạng.

Ta có: A = 1 + 5 + 52 + 53 + 54 + 55 +...+ 597 + 598 + 599

             = (1 + 5 + 52 )+ (53 + 54 + 55 )+...+( 597 + 598 + 599 )

             =(1 + 5 + 52 )+ 53(1 + 5 + 52 ) +...+ 597(1 + 5 + 52 )

             = ( 1 + 5 + 52)(1 + 53+....+597)

             = 31(1 + 53+....+597)

Vì có một thừa số là 31 nên A chia hết cho 31.

 P/s Đừng để ý câu trả lời của mình

Bình luận (0)
NQ
Xem chi tiết
LT
2 tháng 11 2015 lúc 15:00

chia thành từng bộ ba thì tổng của 99 số hạng sau chia hết cho 7

2 + (2\(^2\)+2\(^3\)+2\(^4\)) +..+ (2\(^{98}\)+2\(^{99}\)+2\(^{100}\))
 2 + 7.2\(^2\) +..+ 7.2\(^{98}\) => A chia 7 dư 2

Bình luận (0)
LN
Xem chi tiết
NC
Xem chi tiết
NP
12 tháng 12 2017 lúc 23:07

chia thành từng bộ ba thì tổng của 99 số hạng sau chia hết cho 7 
A = 2 + (2^2+2^3+2^4) +..+ (2^98+2^99+2^100) 
A = 2 + 7.2^2 +..+ 7.2^98 => A chia 7 dư 2 

Bình luận (0)
PD
12 tháng 12 2017 lúc 23:09

chia thành từng bộ ba thì tổng của 99 số hạng sau chia hết cho 7 
A = 2 + (2^2+2^3+2^4) +..+ (2^98+2^99+2^100) 
A = 2 + 7.2^2 +..+ 7.2^98 => A chia 7 dư 2 

Bình luận (0)
NH
Xem chi tiết