Những câu hỏi liên quan
PL
Xem chi tiết
NM
16 tháng 10 2021 lúc 10:36

\(=\left(x-y\right)^2+1\ge1>0,\forall x,y\)

Bình luận (0)
OY
16 tháng 10 2021 lúc 10:38

\(x^2-2xy+y^2+1\)

\(=\left(x-y\right)^2+1\)

Vì \(\left(x-y\right)^2\ge0\) với mọi \(x,y\in R\)

\(\Rightarrow\left(x-y\right)^2+1\ge1\) với mọi \(x,y\in R\)

\(\Rightarrow\left(x-y\right)^2+1>0\) với mọi \(x,y\in R\) (đpcm)

 

Bình luận (0)
NA
Xem chi tiết
LH
11 tháng 8 2017 lúc 21:35

\(x^2-2xy+y^2+1\)

\(=\left(x^2-2xy+y^2\right)+1\)

\(=\left(x-y\right)^2+1\)

vì \(\left(x-y\right)^2\ge0\Rightarrow\left(x-y\right)^2+1>0\forall x,y\)

vậy ................

Bình luận (0)
NA
Xem chi tiết
SK
Xem chi tiết
H24
21 tháng 4 2017 lúc 18:22

undefined

Bình luận (0)
PL
14 tháng 10 2017 lúc 21:53

a) x2 - 2xy + y2 + 1

= ( x - y)2 + 1

Do : ( x - y)2 lớn hơn hoặc bằng 0 với mọi số tực x và y

--> ( x -y)2 + 1 lớn hơn hoặc bằng 1 > 0 với mọi số thực x và y

Khi và chỉ khi : x - y =0 --> x =y

b) x - x2 - 1

= - ( x2 - x + 1)

= - [ x2 - 2.\(\dfrac{1}{2}\)x + (\(\dfrac{1}{2}\))2 - \(\dfrac{1}{4}+1\)]

= - ( x - \(\dfrac{1}{2}\))2 + \(\dfrac{1}{4}-1\)

= - ( x - \(\dfrac{1}{2}\))2 - \(\dfrac{3}{4}\)

Do : - ( x - \(\dfrac{1}{2}\))2 nhỏ hơn hoặc bằng 0 với mọi số thực x

--> - ( x - \(\dfrac{1}{2}\))2 - \(\dfrac{3}{4}\) nhỏ hơn hoặc bằng - \(\dfrac{3}{4}\)với mọi số thực x

Khi và chỉ khi : x - \(\dfrac{1}{2}\)=0 --> x = \(\dfrac{1}{2}\)

Bình luận (0)
NH
Xem chi tiết
HN
19 tháng 10 2016 lúc 23:03

\(x^2-2xy-x+1+2y^2=x^2-x\left(2y+1\right)+\frac{\left(2y+1\right)^2}{4}-\frac{\left(2y+1\right)^2}{4}+2y^2+1\)

\(=\left(x-\frac{2y+1}{2}\right)^2+\frac{1}{4}\left(2y-1\right)^2+\frac{1}{2}>0\)

Bình luận (0)
NH
19 tháng 10 2016 lúc 23:14

bn có thể lm rõ hơn dc chứ

Bình luận (0)
TH
Xem chi tiết
TK
23 tháng 2 2020 lúc 14:29

\(\Leftrightarrow-1-\left(x-y\right)^2\le-1< 0\)

Bình luận (0)
 Khách vãng lai đã xóa
NV
Xem chi tiết
NL
Xem chi tiết
NT
19 tháng 11 2016 lúc 20:43

a) x2 -  2xy + y2  + 1 = (x-y)2 + 1 \(\ge\)1  

=> (x-y)2 +1 >0  =>  x2 - 2xy + y2  >0 

b) x - x2 - 1 = -(x2 - x + \(\frac{1}{4}\)) - \(\frac{3}{4}\)= - (x-\(\frac{1}{2}\))2\(\frac{3}{4}\)< 0   => x -  x2  - 1 <0

Bình luận (0)
HH
7 tháng 7 2020 lúc 9:51

a) Ta có:

\(x^2-2xy+y^2+1\)

\(=\left(x^2-2xy+y^2\right)+1\)

.\(=\left(x-y\right)^2+1\)

\(\left(x-y\right)^2\ge0\)với mọi \(x,y\in R\)

\(\Rightarrow x^2-2xy+y^2+1\)

\(=\left(x-y\right)^2+1\ge0+1=1>0 \forall x,y\in R\left(đpcm\right)\)

b) Ta có :

\(x-x^2-1\)

\(=-\left(x^2-x+1\right)\)

\(=-\left(x^2-2.x.\frac{1}{2}+\frac{1}{2^2}+1-\frac{1}{2^2}\right)\)

\(=-\left[\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\right]\)

Ta có :

\(\left(x-\frac{1}{2}\right)^2\ge0\)với mọi số thực x

\(\Rightarrow\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\ge0+\frac{3}{4}=\frac{3}{4}>0\)với mọi số thực x

\(\Rightarrow x-x^2-1=-\left[\left(x-\frac{1}{2}\right)^2-\frac{3}{4}\right]< 0\)với mọi số thực ( đpcm )

Bình luận (0)
 Khách vãng lai đã xóa
HD
Xem chi tiết
BS
27 tháng 12 2022 lúc 19:14

Ta có: \(x^2-2xy+y^2+1=\left(x-y\right)^2+1\)

Vì \(\left(x-y\right)^2\ge0\forall x,y\)

Mà \(1>0\)

\(\Rightarrow\left(x-y\right)^2+1>0\forall x,y\left(đpcm\right)\)

Bình luận (0)