\(\frac{x}{300}-\frac{\left(x+600\right)}{400}=1\)
\(\frac{\left(\frac{1}{1}+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{101}\right)-\left(\frac{1}{300}+\frac{1}{301}+\frac{1}{302}+...+\frac{1}{400}\right)}{\left(\frac{1}{1}+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{299}\right)-\left(\frac{1}{102}+\frac{1}{103}+\frac{1}{104}+...+\frac{1}{400}\right)}\)
G mk với, mk cần gấp lắm. Ai giải được mk k cho
(x-1)\(\left(\frac{600}{x}+30\right)=600\)
ĐKXĐ : \(x\ne0\)
Ta có : \(\left(x-1\right)\left(\frac{600}{x}+30\right)=600\)
=> \(600-\frac{600}{x}+30x-30=600\)
=> \(30x-\frac{600}{x}-30=0\)
=> \(30x^2-30x-600=0\)
=> \(\Delta=b^2-4ac=\left(-30\right)^2-4.30.\left(-600\right)=72900\)
Ta thấy denta > 0 nên phương trình có 2 nghiệm phân biệt :
\(\left\{{}\begin{matrix}x_1=\frac{-b-\sqrt{\Delta}}{2a}=\frac{30-\sqrt{72900}}{2.30}=-4\\x_2=\frac{30+\sqrt{72900}}{2.30}=5\end{matrix}\right.\)
Vậy ...
Bài 1 : Giải pt sau.
\(\left(\frac{400}{x-2}\right)\left(x+\frac{1}{4}\right)=400\)
ĐKXĐ: \(x\ne2\)
\(\Leftrightarrow\frac{4x+1}{4\left(x-2\right)}=1\Leftrightarrow4x+1=4x-8\Leftrightarrow1=-8\)
Phương trình đã cho vô nghiệm
Bài 1 : Giải pt sau.
\(\left(\frac{400}{x}-2\right)\left(x+\frac{1}{4}\right)=400\)
Lời giải:
ĐK: $x\neq 0$
PT $\Rightarrow (400-2x)(x+\frac{1}{4})=400x$
$\Leftrightarrow (200-x)(4x+1)=800x$
$\Leftrightarrow 800x+200-4x^2-x=800x$
$\Leftrightarrow -4x^2-x+200=0$
$\Leftrightarrow 4x^2+x-200=0$
$\Leftrightarrow (2x+\frac{1}{4})^2=\frac{3201}{16}$
$\Rightarrow 2x+\frac{1}{4}=\pm \frac{\sqrt{3201}}{4}$
$\Rightarrow x=-\frac{1}{8}\pm \frac{\sqrt{3201}}{8}$
Tính nhanh:
\(A=\left(1-\frac{1}{9}\right)\)x \(\left(1-\frac{1}{16}\right)\)x \(\left(1-\frac{1}{25}\right)\)x ....... x \(\left(1-\frac{1}{361}\right)\)x \(\left(1-\frac{1}{400}\right)\)
cho A = \(\frac{1}{1.102}+\frac{1}{2.103}+...+\frac{1}{299.400}\)
Chứng minh A = \(\frac{1}{101}\left(1+\frac{1}{2}+...+\frac{1}{101}\right)-\left(\frac{1}{300}+\frac{1}{301}+...+\frac{1}{400}\right)\)
1/TÍNH NHANH
a/ \(\frac{\left(2^3.5.7\right).\left(5^2.7^3\right)}{\left(2.5.7^2\right)^2}\)
2/so sánh
a/\(\frac{2009}{2010}va\frac{2010}{2011}\) b/\(\frac{1}{3^{400}}va\frac{1}{4^{300}}\) c/\(\frac{200}{201}+\frac{201}{202}va\frac{200+201}{201+202}\) d/\(\frac{2008}{2008+2009}va\frac{2009}{2009+2010}\)
3/TÌM X BIẾT
\(\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+....+\frac{2}{97.99}\right)-x=\frac{-100}{99}\)
GIÚP MÌNH NHA MAI MÌNH NỘP RÙI
a/\(\frac{\left(2^3.5.7\right).\left(5^2.7^3\right)}{\left(2.5.7^2\right)^2}\)
=\(\frac{2^3.5^3.7^4}{2^2.5^2.7^4}\)
=2.5
=10
\(A=6\sqrt{27}-2\sqrt{75}-\frac{1}{2}\sqrt{300}\)
\(B=\left(1+\frac{x+\sqrt{x}}{\sqrt{x}+1}\right)\left(1-\frac{x-\sqrt{x}}{\sqrt{x}-1}\right)\)
\(C=\sqrt[3]{64}-\sqrt[3]{-125}+\sqrt[3]{216}\)
\(A=6\sqrt{27}-2\sqrt{75}-\frac{1}{2}\sqrt{300}\)
\(A=6\sqrt{3^2.3}-2\sqrt{5^2.3}-\frac{1}{2}\sqrt{10^2.3}\)
\(A=18\sqrt{3}-10\sqrt{3}-5\sqrt{3}\)
\(A=3\sqrt{3}\)
vậy \(A=3\sqrt{3}\)
\(B=\left(1+\frac{x+\sqrt{x}}{\sqrt{x}+1}\right)\left(1-\frac{x-\sqrt{x}}{\sqrt{x}-1}\right)\) \(ĐKXĐ:x>0;x\ne1\)
\(B=\left[1+\frac{\sqrt{x}\left(\sqrt{x}+1\right)}{\sqrt{x}+1}\right]\left[1+\frac{\sqrt{x}\left(\sqrt{x}-1\right)}{\sqrt{x}-1}\right]\)
\(B=\left[1+\sqrt{x}\right]\left[1-\sqrt{x}\right]\)
\(B=1-x\)
vậy \(B=1-x\)
\(C=\sqrt[3]{64}-\sqrt[3]{-125}+\sqrt[3]{216}\)
\(C=\sqrt[3]{4^3}-\sqrt[3]{\left(-5\right)^3}+\sqrt[3]{6^3}\)
\(C=4+5+6\)
\(C=15\)
vậy \(C=15\)
Cho mk giải câu a:
\(A=6\sqrt{27}-2\sqrt{75}-\frac{1}{2}\sqrt{300}\)
\(A=18\sqrt{3}-10\sqrt{3}-\frac{1}{2}10\sqrt{3}\)
\(A=18\sqrt{3}-10\sqrt{3}-10:2\sqrt{3}\)
\(A=18\sqrt{3}-10\sqrt{3}-5\sqrt{3}\)
\(A=\left(18-10-5\right)\sqrt{3}\)
\(A=3\sqrt{3}\)
GIẢI PT:
\(\left(1+\frac{1}{5}+\frac{1}{5^2}+...+\frac{1}{5^{99}}\right)x+\frac{1}{4.5^{99}.x}=\frac{1}{50}+\frac{1}{150}+\frac{1}{300}+...+\frac{1}{9500}\)
Đặt \(A=1+\frac{1}{5}+\frac{1}{5^2}+...+\frac{1}{5^{99}}\)
=> \(\frac{1}{5}.A=\frac{1}{5}+\frac{1}{5^2}+...+\frac{1}{5^{99}}+\frac{1}{5^{100}}\)
=> \(A-\frac{1}{5}A=\frac{4}{5}.A=1-\frac{1}{5^{100}}\Rightarrow\frac{4}{5}.A=\frac{5^{100}-1}{5^{100}}\Rightarrow A=\frac{5^{100}-1}{4.5^{99}}\)
Tính \(\frac{1}{50}+\frac{1}{150}+\frac{1}{300}+...+\frac{1}{9500}=\frac{1}{25}.\left(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+...+\frac{1}{380}\right)\)
\(=\frac{1}{25}.\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{19.20}\right)=\frac{1}{25}.\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{19}-\frac{1}{20}\right)\)\(=\frac{1}{25}.\left(1-\frac{1}{20}\right)=\frac{19}{20.25}=\frac{19}{4.5^3}\)
vậy phương trình đã cho trở thành:
\(\frac{5^{100}-1}{4.5^{99}}.x+\frac{1}{4.5^{99}.x}=\frac{19}{4.5^3}\Rightarrow\left(5^{100}-1\right)x^2+1=19.5^{96}.x\)
\(\left(5^{100}-1\right)x^2-19.5^{96}.x+1=0\)
bạn kiểm tra lại đề lần nữa, phương trình này có nghiệm rất lẻ , nghiệm lớn