Những câu hỏi liên quan
NH
Xem chi tiết
TN
Xem chi tiết
NL
19 tháng 6 2020 lúc 16:44

ĐKXĐ : \(x\ne0\)

Ta có : \(\left(x-1\right)\left(\frac{600}{x}+30\right)=600\)

=> \(600-\frac{600}{x}+30x-30=600\)

=> \(30x-\frac{600}{x}-30=0\)

=> \(30x^2-30x-600=0\)

=> \(\Delta=b^2-4ac=\left(-30\right)^2-4.30.\left(-600\right)=72900\)

Ta thấy denta > 0 nên phương trình có 2 nghiệm phân biệt :

\(\left\{{}\begin{matrix}x_1=\frac{-b-\sqrt{\Delta}}{2a}=\frac{30-\sqrt{72900}}{2.30}=-4\\x_2=\frac{30+\sqrt{72900}}{2.30}=5\end{matrix}\right.\)

Vậy ...

Bình luận (0)
TN
Xem chi tiết
NL
13 tháng 2 2020 lúc 19:08

ĐKXĐ: \(x\ne2\)

\(\Leftrightarrow\frac{4x+1}{4\left(x-2\right)}=1\Leftrightarrow4x+1=4x-8\Leftrightarrow1=-8\)

Phương trình đã cho vô nghiệm

Bình luận (0)
 Khách vãng lai đã xóa
TN
Xem chi tiết
AH
14 tháng 2 2020 lúc 1:30

Lời giải:

ĐK: $x\neq 0$

PT $\Rightarrow (400-2x)(x+\frac{1}{4})=400x$

$\Leftrightarrow (200-x)(4x+1)=800x$

$\Leftrightarrow 800x+200-4x^2-x=800x$

$\Leftrightarrow -4x^2-x+200=0$

$\Leftrightarrow 4x^2+x-200=0$

$\Leftrightarrow (2x+\frac{1}{4})^2=\frac{3201}{16}$

$\Rightarrow 2x+\frac{1}{4}=\pm \frac{\sqrt{3201}}{4}$

$\Rightarrow x=-\frac{1}{8}\pm \frac{\sqrt{3201}}{8}$

Bình luận (0)
 Khách vãng lai đã xóa
NQ
Xem chi tiết
HA
Xem chi tiết
NH
Xem chi tiết
NT
9 tháng 5 2018 lúc 13:21

a/\(\frac{\left(2^3.5.7\right).\left(5^2.7^3\right)}{\left(2.5.7^2\right)^2}\)

=\(\frac{2^3.5^3.7^4}{2^2.5^2.7^4}\)

=2.5

=10

Bình luận (0)
AO
Xem chi tiết
AO
16 tháng 12 2017 lúc 11:55

\(A=6\sqrt{27}-2\sqrt{75}-\frac{1}{2}\sqrt{300}\)

\(A=6\sqrt{3^2.3}-2\sqrt{5^2.3}-\frac{1}{2}\sqrt{10^2.3}\)

\(A=18\sqrt{3}-10\sqrt{3}-5\sqrt{3}\)

\(A=3\sqrt{3}\)

vậy \(A=3\sqrt{3}\)

\(B=\left(1+\frac{x+\sqrt{x}}{\sqrt{x}+1}\right)\left(1-\frac{x-\sqrt{x}}{\sqrt{x}-1}\right)\)  \(ĐKXĐ:x>0;x\ne1\)

\(B=\left[1+\frac{\sqrt{x}\left(\sqrt{x}+1\right)}{\sqrt{x}+1}\right]\left[1+\frac{\sqrt{x}\left(\sqrt{x}-1\right)}{\sqrt{x}-1}\right]\)

\(B=\left[1+\sqrt{x}\right]\left[1-\sqrt{x}\right]\)

\(B=1-x\)

vậy \(B=1-x\)

\(C=\sqrt[3]{64}-\sqrt[3]{-125}+\sqrt[3]{216}\)

\(C=\sqrt[3]{4^3}-\sqrt[3]{\left(-5\right)^3}+\sqrt[3]{6^3}\)

\(C=4+5+6\)

\(C=15\)

vậy \(C=15\)

Bình luận (0)
BS
16 tháng 12 2017 lúc 11:55

Cho mk giải câu a:

\(A=6\sqrt{27}-2\sqrt{75}-\frac{1}{2}\sqrt{300}\)

\(A=18\sqrt{3}-10\sqrt{3}-\frac{1}{2}10\sqrt{3}\)

\(A=18\sqrt{3}-10\sqrt{3}-10:2\sqrt{3}\)

\(A=18\sqrt{3}-10\sqrt{3}-5\sqrt{3}\)

\(A=\left(18-10-5\right)\sqrt{3}\)

\(A=3\sqrt{3}\)

Bình luận (0)
HM
Xem chi tiết
TL
24 tháng 3 2015 lúc 17:11

Đặt \(A=1+\frac{1}{5}+\frac{1}{5^2}+...+\frac{1}{5^{99}}\)

=>  \(\frac{1}{5}.A=\frac{1}{5}+\frac{1}{5^2}+...+\frac{1}{5^{99}}+\frac{1}{5^{100}}\)

=> \(A-\frac{1}{5}A=\frac{4}{5}.A=1-\frac{1}{5^{100}}\Rightarrow\frac{4}{5}.A=\frac{5^{100}-1}{5^{100}}\Rightarrow A=\frac{5^{100}-1}{4.5^{99}}\)

Tính \(\frac{1}{50}+\frac{1}{150}+\frac{1}{300}+...+\frac{1}{9500}=\frac{1}{25}.\left(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+...+\frac{1}{380}\right)\)

\(=\frac{1}{25}.\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{19.20}\right)=\frac{1}{25}.\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{19}-\frac{1}{20}\right)\)\(=\frac{1}{25}.\left(1-\frac{1}{20}\right)=\frac{19}{20.25}=\frac{19}{4.5^3}\)

vậy phương trình đã cho trở thành:

\(\frac{5^{100}-1}{4.5^{99}}.x+\frac{1}{4.5^{99}.x}=\frac{19}{4.5^3}\Rightarrow\left(5^{100}-1\right)x^2+1=19.5^{96}.x\)

\(\left(5^{100}-1\right)x^2-19.5^{96}.x+1=0\)

bạn kiểm tra lại đề lần nữa, phương trình này có nghiệm  rất lẻ , nghiệm lớn

 

Bình luận (0)