Find x and y
5/x + y/4 = 1/8
can u help me please
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Tìm đa thức M biết rằng:
\(M+\left(5x^2-2xy\right)=6x^2+9xy-y^2.\)\(Tính\)\(giá\)\(trị\)\(của\)\(M\)\(khi\)\(x,y\)\(thỏa\)\(mãn\)\(\left(2x-5\right)^{2018}+\left(3y+4\right)^{2020}\le0\)
HELP ME PLEASE !!!!!
HELP ME PLEASE !!!!!
HELP ME PLEASE !!!!!
HELP ME PLEASE !!!!!
HELP ME PLEASE !!!!!
HELP ME PLEASE !!!!!
HELP ME PLEASE !!!!!
HELP ME PLEASE !!!!!
HELP ME PLEASE !!!!!
*\(M+\left(5x^2-2xy\right)=6x^2+9xy-y^2\)
\(M=6x^2+9xy-y^2-\left(5x^2-2xy\right)\)
\(M=6x^2+9xy-y^2-5x^2+2xy\)
\(M=\left(6-5\right)x^2+\left(9+2\right)xy-y^2\)
\(M=x^2+11xy-y^2\)
* \(\left(2x-5\right)^{2018}+\left(3y+4\right)^{2020}\le0\)
Ta có : \(\hept{\begin{cases}\left(2x-5\right)^{2018}\ge0\forall x\\\left(3y+4\right)^{2020}\ge0\forall y\end{cases}\Rightarrow}\left(2x-5\right)^{2018}+\left(3y+4\right)^{2020}\ge0\forall x,y\)
Mà đề cho \(\left(2x-5\right)^{2018}+\left(3y+4\right)^{2020}\le0\)
=> \(\left(2x-5\right)^{2018}+\left(3y+4\right)^{2020}=0\)
=> \(\hept{\begin{cases}2x-5=0\\3y+4=0\end{cases}\Rightarrow}\hept{\begin{cases}x=\frac{5}{2}\\y=-\frac{4}{3}\end{cases}}\)
Thay x = 5/2 ; y = -4/3 vào M ta được :
\(M=\left(\frac{5}{2}\right)^2+11\cdot\frac{5}{2}\cdot\left(-\frac{4}{3}\right)-\left(-\frac{4}{3}\right)^2\)
\(M=\frac{25}{4}+\frac{-110}{3}-\frac{16}{9}\)
\(M=\frac{-1159}{36}\)
Vậy giá trị của M = -1159/36 khi x = 5/2 ; y = -4/3
Không chắc nha
Phân tích đa thức thành nhân tử:
a) 4(2-x)^2+xy-2y
b) 2(x-1)^3-5(x-1)^2-(x-1)
c) x^3+y^3+z^3-3xyz
HELP ME, PLEASE!!!
\(a,4\left(2-x\right)^2+xy-2y\)
\(=4\left(2-x\right)^2-y\left(2-x\right)\)
\(=4-y\left(2-x\right)^2\left(2-x\right)\)
\(=\left(2-x\right)\left[\left(2-x\right)4-y\right]\)
\(=\left(2-x\right)\left(4x-8+y\right)\)
\(c,x^3+y^3+z^3-3xyz\)
\(=x^3+y^3+z^3+3x^2y-3x^2y+3xy^2-3xy^2-3xyz\)
\(=\left(x^3+3x^2y+3xy^2+y^3\right)-3x^2y-3xy^2+z^3-3xyz\)
\(=\left(x+y\right)^3-3xy\left(x+1\right)+z^3-3xyz\)
\(=\left[\left(x+y\right)^3+z^3\right]-3xy\left(x+y\right)-3xyz\)
\(=\left[\left(x+y\right)+z\right]\left[\left(x+y\right)^2-\left(x+y\right)z+z^2\right]-3xy\left(x+y+z\right)\)
\(=\left(x+y+z\right)\left(x^2+2xy+y^2-xz-yz+z^2\right)-3xy\left(x+y+z\right)\)
\(=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-xz-yz\right)\)
a) 4(2 - x)2 + xy - 2y = 4(x - 2)2 + y(x - 2) = (4x - 8 + y)(x - 2)
b) 2(x - 1)3 - 5(x - 1)2 - (x - 1) = (x - 1)[2(x - 1)2 - 5(x - 1) - 1]
= (x - 1)(2x2 - 4x + 2 - 5x + 5 - 1) = (x - 1)(2x2 - 9x + 6)
c) x3 + y3 + z3 - 3xyz = (x + y)(x2 - xy + y2) + z3 - 3xyz
= (x + y)3 + z3 - 3xy(x + y) - 3xyz = (x + y + z)(x2 + 2xy + y2 - xz - yz + z2) - 3xy(x + y + z)
= (x + y + z)(x2 + y2 + z2 - xz - yz + 2xy - 3xy) = (x + y + z)(x2 + y2 + z2 - xy - yz - xz)
Câu 1: Biết 2(x + 5) = x2 + 5x. Tìm x
Câu 2: 5x4y6 chia hết cho 4x2yn
Help me, please! Thanks for your helping!
Câu 1: \(x^2+5x=2\left(x+5\right)\)
\(\Leftrightarrow x\left(x+5\right)-2\left(x+5\right)=0\)
\(\Leftrightarrow\left(x+5\right)\left(x-2\right)=0\)
=>x=-5 hoặc x=2
Câu 2:
Ta có: \(5x^4y^6⋮4x^2y^n\)
=>6-n>=0
hay n<=6
A). Find the percentages of 3 and 4
B). Find 15% of 24 kg
C). Find the amount of a bag of rice, given that 15% of amount is 3.6 kg
Help me please!
tìm x,y thuộc Z biết
xy +x +y = 4
help me please
\(xy+x+y=4\)
\(\Leftrightarrow xy+x+y+1=4+1\)
\(\Leftrightarrow x\left(y+1\right)+\left(y+1\right)=5\)
\(\Leftrightarrow\left(x+1\right)\left(y+1\right)=5\)
\(\Leftrightarrow x+1;y+1\inƯ\left(5\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x+1=1\\y+1=5\end{matrix}\right.\\\left\{{}\begin{matrix}x+1=5\\y+1=1\end{matrix}\right.\\\left\{{}\begin{matrix}x+1=-1\\y+1=-5\end{matrix}\right.\\\left\{{}\begin{matrix}x+1-5\\y+1=-1\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x=0\\y=4\end{matrix}\right.\\\left\{{}\begin{matrix}x=4\\y=0\end{matrix}\right.\\\left\{{}\begin{matrix}x=-2\\y=-6\end{matrix}\right.\\\left\{{}\begin{matrix}x=-6\\y=-2\end{matrix}\right.\end{matrix}\right.\)
Vậy ...
cho x,y,z là các số dương t/m x+y+z=6
cm : \(8^x+8^y+8^z\ge4^{x+1}+4^{y+1}+4^{z+1}\)
please help me
Dự đoán dấu bằng xảy ra khi \(x=y=z=2\), áp dụng BĐT AM-GM ta có:
\(8^x+8^x+64\ge3\sqrt[3]{8^x\cdot8^x\cdot64}=12\cdot4^x\)
\(8^y+8^y+64\ge3\sqrt[3]{8^y\cdot8^y\cdot64}=12\cdot4^y\)
\(8^z+8^z+64\ge3\sqrt[3]{8^z\cdot8^z\cdot64}=12\cdot4^z\)
Suy ra \(2\left(8^x+8^y+8^z\right)+3\cdot64\ge12\left(4^x+4^y+4^z\right)\left(1\right)\)
Theo giả thiết ta có:
\(8^x+8^y+8^z\ge3\sqrt[3]{8^{x+y+z}}=3\sqrt[3]{8^6}=3\cdot64\left(2\right)\)
Cộng (1) với (2) theo vế ta có:
\(3\left(8^x+8^y+8^z\right)\ge12\left(4^x+4^y+4^z\right)=4^{x+1}+4^{y+1}+4^{z+1}\)
x-1/3=1/4*x
help me please!
x - 1/3 = 1/4 . x
-1/3 = 1/4 .x -x
-1/3 = x . [1/4 -1 ]
-1/3 = x . -3/4
x . -3/4 = -1/3
x = -1/3 ; -3/4
x = 4/9
Help me please !!
Find the value of n, if the sum of even positive integers between n2 - n + 1 and n2 + n + 1 is a number between 2500 and 3000
ta có \(\left(n^2-n+1\right)+\left(n^2+n+1\right)\\ =n^2-n+1+n^2+n+1\\ =2n^2+2\)
=>\(n\in\left\{n\in N\right\}112\le n\ge123\)
bài này mk k bt cách trình bày nhưng kết quả hình như là 15 đó bạn....
Tính:
x+z+2/y=y+z+1/x=x+y-3=1/x+y+z
Please help me!!!
Thanks^^
#)Giải :
Áp dụng tính chất dãy tỉ số bằng nhau :
\(\frac{x+y+1}{x}=\frac{x+z+2}{y}=\frac{x+y-3}{z}=\frac{\left(x+y+1\right)+\left(x+z+2\right)+\left(x+y-3\right)}{x+y+z}\)
\(=\frac{2\left(x+y+z\right)}{x+y+z}=2\)
\(\Rightarrow\frac{1}{x+y+z}=2\)
\(\Rightarrow\hept{\begin{cases}y+z+1=2x\left(1\right)\\x+y+2=2y\left(2\right)\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x+y-3=2z\left(3\right)\\x+y+z=\frac{1}{2}\left(4\right)\end{cases}}\)
Ta có :
\(\left(\cdot\right)x+y+z=\frac{1}{2}\Rightarrow y+z=\frac{1}{2}-x\) Thay \(\left(1\right)\) vào ta được :
\(\frac{1}{2}-x+1=2x\Rightarrow x=\frac{1}{2}\)
\(\left(\cdot\right)x+y+z=\frac{1}{2}\Rightarrow x+z=\frac{1}{2}-y\) Thay \(\left(2\right)\) vào ta được :
\(\frac{1}{2}-y+2=2y\Rightarrow y=\frac{5}{6}\)
\(\left(\cdot\right)x+y+z=\frac{1}{2}+\frac{5}{6}+z=\frac{1}{2}\Rightarrow z=\frac{-5}{6}\)
Vậy \(\hept{\begin{cases}x=\frac{1}{2}\\y=\frac{5}{6}\\z=\frac{-5}{6}\end{cases}}\)
phải có 2 trường hợp
TH1 x+y+x=0
TH2 x+y+z khác 0 chứ