1)Cho S = 1 - 5 + 52 - 53 + ... + 598 - 599
a) Tính S
b) CMR : 5100 chia cho 6 dư 1
Cho S = 1 - 5 + 52 - 53 +.... + 598 - 599
a)Tính S b)CMR: 5100 chia cho 6 dư 1
0\(a.S=1-5+5^2-5^3+...+5^{98}-5^{99}\\ 5S=5-5^2+5^3-5^4+.....+5^{99}-5^{100}\\ 5S+S=\left(5-5^2+5^3-5^4+.....+5^{99}-5^{100}\right)+\left(1-5^{ }+5^2-5^3+.....+5^{98}-5^{99}\right)\\ 6S=1-5^{100}\\ S=\dfrac{1-5^{100}}{6}\\ \)
\(b,S6=1-5^{100}\\ 1-S6=5^{100}\)
=> 5100 chia 6 du 1
e đang cần gấp, có ai đến giúp e ko?
\(S=1-5+5^2-5^3+...+5^{98}-5^{99}\\ a,S=5^0.\left(1-5\right)+5^2.\left(1-5\right)+...+5^{98}.\left(1-5\right)=-4.\left(5^0+5^2+5^4+...+5^{98}\right)\)
1:tìm các số nguyên x,y biết:
xy - 3y + y = 20
2:tìm các số nguyên x,thỏa mãn:
(x - 3 ).(x + 4) >0
3:Cho S=1-5+52-53+....+598-599
a)Tính S.
b) Chứng minh rằng :5100 chia cho 6 dư 1
( giúp mk với,mk đang cần gấp ^^)
Bài 2:
Ta có: (x-3)(x+4)>0
=>x>3 hoặc x<-4
Bài 3:
a: \(5S=5-5^2+...+5^{99}-5^{100}\)
\(\Leftrightarrow6S=1-5^{100}\)
hay \(S=\dfrac{1-5^{100}}{6}\)
Ta có: A = 5 + 52 + 53 +....+ 5100
chia hết
Ta có: A = 5 + 52 + 53 +....+ 5100
Đề bài thiếu yêu cầu cụ thể em nhé. em cập nhật lại câu hỏi để được sự hỗ trợ tốt nhất cho tài khoản olm vip
Cho S = 1/51 + 1/52 + 1/53 + ... + 1/100 . CMR 7/12 < S < 5/6
thu gọn tổng sau
C=1+5+52+54+...+598+5100
Lời giải:
$C=1+5+5^2+5^4+.....+5^{98}+5^{100}$
$25C=5^2C=5^2+5^3+5^4+5^6+....+5^{100}+5^{102}$
$25C-C=(5^3+5^{102})-(5+1)$
$24C=5^{102}-119$
$C=\frac{5^{102}-119}{24}$
a) Cho S = 5 + 52 + 53 + 54 + 55 + 56 +…+ 52012. Chứng tỏ S chia hết cho 65.
b) Tìm số tự nhiên nhỏ nhất sao cho khi chia cho 11 dư 6, chia cho 4 dư 1 và chia cho 19 dư 11.
c) Chứng tỏ: A = 10n + 18n - 1 chia hết cho 27 (với n là số tự nhiên)
a. S = 5 + 52 + 53 + 54 + 55 + 56 +...+ 52012.
S = (5 + 52 + 53 + 54) + 55(5 + 52 + 53 + 54)+....+ 52009(5 + 52 + 53 + 54)
Vì (5 + 52 + 53 + 54) = 780 chia hết cho 65
Vậy S chia hết cho 65
b. Gọi số cần tìm là a ta có: (a - 6) chia hết cho 11; (a - 1) chia hết cho 4; (a - 11) chia hết cho 19.
(a - 6 + 33) chia hết cho 11; (a - 1 + 28) chia hết cho 4; (a - 11 + 38) chia hết cho 19.
(a + 27) chia hết cho 11; (a + 27) chia hết cho 4; (a + 27) chia hết cho 19.
Do a là số tự nhiên nhỏ nhất nên a + 27 nhỏ nhất
Suy ra: a + 27 = BCNN (4;11; 19).
Từ đó tìm được: a = 809
A = 10n + 18n - 1 = 10n - 1 - 9n + 27n
Ta biết số n và số có tổng các chữ số bằng n có cùng số dư khi chia cho 9 do đó nên
* Vậy A chia hết cho 27
a) Cho S = 5 + 52+ 53 + 54 + 55 + 56 +…+ 52012. Chứng tỏ S chia hết cho 65.
b) Tìm số tự nhiên nhỏ nhất sao cho khi chia cho 11 dư 6, chia cho 4 dư 1và chia cho 19 dư 11.
c) Chứng tỏ: A = 10n+ 18n - 1 chia hết cho 27 (với n là số tự nhiên)
a. S = 5 + 52 + 53 + 54 + 55 + 56 +...+ 52012.
S = (5 + 52 + 53 + 54) + 55(5 + 52 + 53 + 54)+....+ 52009(5 + 52 + 53 + 54)
Vì (5 + 52 + 53 + 54) = 780 chia hết cho 65
Vậy S chia hết cho 65
b. Gọi số cần tìm là a ta có: (a - 6) chia hết cho 11; (a - 1) chia hết cho 4; (a - 11) chia hết cho 19.
(a - 6 + 33) chia hết cho 11; (a - 1 + 28) chia hết cho 4; (a - 11 + 38) chia hết cho 19.
(a + 27) chia hết cho 11; (a + 27) chia hết cho 4; (a + 27) chia hết cho 19.
Do a là số tự nhiên nhỏ nhất nên a + 27 nhỏ nhất
Suy ra: a + 27 = BCNN (4;11; 19).
Từ đó tìm được: a = 809
A = 10n + 18n - 1 = 10n - 1 - 9n + 27n
bài 6:
a) Tìm cặp số x,y nguyên biết: (x - 3).(y+1)=5
b) Cho A = 21 + 5 + 52 + 53 + ... + 599.Tìm số dư của phép chia khi lấy A chia cho 6
Lời giải:
a. $(x-3)(y+1)=5=1.5=5.1=(-1)(-5)=(-5)(-1)$
Vì $x-3, y+1$ cũng là số nguyên nên ta có bảng sau:
b.
$A=21+5+(5^2+5^3)+(5^4+5^5)+....+(5^{98}+5^{99})$
$=26+5^2(1+5)+5^4(1+5)+....+5^{98}(1+5)$
$=2+24+(1+5)(5^2+5^4+...+5^{98}$
$=2+24+6(5^2+5^4+....+5^{98})=2+6(4+5^2+5^4+...+5^{98})$
$\Rightarrow A$ chia $6$ dư $2$.
điền chữ số thích hợp vào dấu * để :
1) *45* chia hết cho 2;3;5;9
2)*1*8 chia hết cho 2;3;9
3)2025+*36 chia hết cho 3
4)125+5100+31* chia hết cho 5
5)202210+420+53* chia hết cho 2
6)37*+*23 chia hết cho 3
1, \(\overline{a45b}\) \(⋮\) 2; 3; 5; 9
⇒ b = 0; a + 4 + 5 + b ⋮ 9 ⇒ a + 9 ⋮ 9 ⇒ a = 9
Vậy \(\overline{a45b}\) = 9450
2, \(\overline{a1b8}\) \(⋮\) 2;3;9 ⇔ a + 1 + b + 8 ⋮ 9 ⇒ a + b ⋮ 9
⇒ b = 0; 1; 2; 3; 4; 5; 6; 7; 8
a = 9; 8; 7; 6; 5; 4; 3; 2; 1
\(\Rightarrow\) \(\overline{a1b8}\) = 9108; 8118; 7128; 6138; 5148; 4158; 3168; 2178; 1188
3, 2025 + \(\overline{a36}\) \(⋮\) 3
⇔ 2 + 0 + 2 + 5 + a + 3 + 6 ⋮ 3
18 + a ⋮ 3
a ⋮ 3
a = 0; 3; 6; 9
4, 125 + 5100 + \(\overline{31a}\) ⋮ 5
⇔ \(\overline{31a}\) ⋮ 5
a ⋮ 5
a = 0; 5
1) \(\overline{x45y}⋮2;3;5;9\)
\(\Rightarrow y=0\left(⋮2;5\right)\)
\(x+4+5+0⋮\left(3;9\right)\)
\(\Rightarrow x=9\)
\(\Rightarrow\overline{x45y}=9450\)
3) \(2025+\overline{x36}⋮3\)
mà \(2025⋮3\)
\(\Rightarrow\overline{x36}⋮3\)
\(\Rightarrow x+3+6⋮3\)
\(\Rightarrow x\in\left\{3;6;9\right\}\)
3) \(2022^{10}+4^{20}+\overline{53x}⋮2\)
\(2022^{10}=2022^8.2022^2=\overline{.....6}x\overline{....4}=\overline{.....4}⋮2\)
\(4^{20}=\overline{.....6}⋮2\)
\(\Rightarrow\overline{53x}⋮2\)
\(\Rightarrow x\in\left\{0;2;4;6;8\right\}\)