cho phương trình (1 - 21a)/x +7 = 1-3a . tìm giá trị của a để phương trình có nghiệm âm
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
cho phương trình (1 - 21a)/x +7 = 1-3a . tìm giá trị của a để phương trình có nghiệm âm
Cho phương trình \(\frac{1-21a}{x+7}=1-3a\) (a là tham số)
Tìm giá trị của a để phương trình trên có nghiệm âm.
\(ĐKXĐ:x\ne7\)
\(\frac{1-21a}{x+7}=1-3a\)
\(\Rightarrow1-21a=\left(1-3a\right)\left(x+7\right)\)
\(\Rightarrow1-21a=x-3ax+7-21a\)
\(\Rightarrow x-3ax=-6\)
\(\Rightarrow x\left(1-3a\right)=-6\)
Để x âm thì 1 - 3a dương hay \(1-3a>0\Leftrightarrow a< \frac{1}{3}\)
Vậy với mọi \(a< \frac{1}{3}\)thì phương trình có nghiệm âm.
Cho phương trình 2x2 + 2(m+1)x +m2+4m + 3 =0
1/Tìm giá trị của m để phương trình nhận x=1 làm nghiệm.Với m vừa tìm đc ,hãy tìm nghiệm còn lại của phương trình
2/Tìm các giá trị của m để phương trình có hai nghiệm trái dấu
3/tìm các giá trị của m để phương trình có hai nghiệm x1, x2
4/ tìm m để phương trình có hai nghiệm x1,x2 sao cho biểu thức A=|x1x2 - 2(x1x2 ) đạt giá trịn lớn nhất
Cho phương trình ẩn x sau:
(2x+m)(x+1)-2x^2+mx+m-2+0 .tìm các giá trị của m để phương trình có nghiệm không âm
\(\left(2x+m\right)\left(x-1\right)-2x^2+mx+m-2=0\)
\(\Leftrightarrow2x^2-2x+mx-m-2x^2+mx+m-2=0\)
\(\Leftrightarrow2\left(m-1\right)x=2\)
\(\Leftrightarrow x=\frac{2}{m-1}\)
Vì \(2>0\)
\(\Rightarrow m-1>0\)
\(\Rightarrow m>1\)
1/Cho hệ phương trình \(\hept{\begin{cases}mx+y=2m\\x+my=m+1\end{cases}}\) tìm các giá trị nguyên âm của m để hệ phương trình trên có nghiệm (x;y) nguyên
2/ Tìm giá trị nguyên nhỏ nhất của m để phương trình \(x^3-mx=0\) có 3 nghiệm phân biệt
cho phương trình \(x^2-2\left(m+2\right)x+m+1=0\)
a, giải phương trình khi m = \(\dfrac{1}{2}\)
b, tìm các giá trị của m để phương trình có 2 nghiệm trái dấu
c, gọi \(x_1;x_2\) là 2 nghiệm của phương trình. Tìm giá trị của m để \(x_1\left(1-2x_2\right)+x_2\left(1-2x_2\right)=m^2\)
a. Bạn tự giải
b. Để pt có 2 nghiệm trái dấu
\(\Leftrightarrow ac< 0\Leftrightarrow m+1< 0\Rightarrow m< -1\)
c. Đề bài có vẻ ko chính xác, sửa lại ngoặc sau thành \(x_2\left(1-2x_1\right)...\)
\(\Delta'=\left(m+2\right)^2-4\left(m+1\right)=m^2\ge0\) ; \(\forall m\)
\(\Rightarrow\) Pt đã cho luôn luôn có nghiệm
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=2\left(m+2\right)\\x_1x_2=m+1\end{matrix}\right.\)
\(x_1\left(1-2x_2\right)+x_2\left(1-2x_1\right)=m^2\)
\(\Leftrightarrow x_1+x_2-4x_1x_2=m^2\)
\(\Leftrightarrow2\left(m+2\right)-4\left(m+1\right)=m^2\)
\(\Leftrightarrow m^2+2m=0\Rightarrow\left[{}\begin{matrix}m=0\\m=-2\end{matrix}\right.\)
Cho phương trình (2m−5)x2 −2(m−1)x+3=0 (1); với m là tham số thực
1) Tìm m để phương trình (1) có một nghiệm bằng 2, tìm nghiệm còn lại.
3) Tìm giá trị của m để phương trình đã cho có nghiệm
4) Xác định các giá trị nguyên của để phương trình đã cho có hai nghiệm phân biệt đều nguyên dương
1) điều kiện của m: m khác 5/2
thế x=2 vào pt1 ta đc:
(2m-5)*4 - 4(m-1)+3=0 <=> 8m-20-4m+4+3=0<=> 4m = 13 <=> m=13/4 (nhận)
lập △'=[-(m-1)]2-*(2m-5)*3 = (m-4)2
vì (m-4)2 ≥ 0 nên phương trình có nghiệm kép => x1= x2 =2
3) vì △'≥0 với mọi m nên phương trình đã cho có nghiệm với mọi m
Cho phương trình x 2 - (m + 1)x + m = 0. Có bao nhiêu giá trị nguyên của m để phương trình đã cho có 2 nghiệm âm?
A. 0
B. 1
C. 2
D. Vô số
Cho Phương Trình \(x^2-2\left(m-1\right)x+m^2-3m=0\)
Tìm m để phương trình có 2 nghiệm trái dấuTìm m để phương trình có 2 nghiệm cùng dấuTìm m để phương trình có 2 nghiệm đều âmTìm m để phương trình có 2 nghiệm đều dươngTìm m để phương trình có 2 nghiệm trái dấu và nghiệm âm có giá trị tuyệt đối lớn hơn nghiệm dươngTìm m để phương trình có 2 nghiệm trái dấu và nghiệm dương có giá trị tuyệt đối lớn hơn nghiệm âmTìm m để phương trình có 1 nghiệm bằng 0. Tìm những nghiệm còn lạiTìm một hệ thức giữa các nghiệm \(x_1\) và \(x_2\) không phụ thuộc vào mGIẢI CÂU NÀO CŨNG ĐƯỢC. GIÚP MK NHÉ, PLS. MK SẼ TICK CHO MẤY BẠN GIẢI BÀI
\(\Delta=\left[-\left(m-1\right)\right]^2-4\left(m^2-3m\right)=m^2-2m+1-4m^2+12m=-3m^2+10m+1\)
Để pt có 2 nghiệm trái dấu thì
\(\hept{\begin{cases}\Delta>0\\P< 0\end{cases}\Leftrightarrow\hept{\begin{cases}-3m^2+10m+1>0\\x_1+x_2=m-1< 0\end{cases}\Rightarrow}\hept{\begin{cases}m>\frac{5-2\sqrt{7}}{3}\\m< 1\end{cases}}}\)