Những câu hỏi liên quan
TO
Xem chi tiết
NM
Xem chi tiết
NM
Xem chi tiết
VG
6 tháng 8 2017 lúc 20:22

ta có: F= 3.x^2 +4x+5

<=> F=3(x^2 +2.x.(2/3) +4/9) -4/3 +5

<=>F=3.(x+2/3)^2 +11/3

Mà 3.(x+2/3)^2 \(\ge\) 0 =>F\(\ge\)11/3

Dấu '=' xảy ra khi x+2/3=0 <=>x=-2/3

Vậy GTNN của F là 11/3 khi x=-2/3

Bình luận (0)
H24
Xem chi tiết
DQ
3 tháng 6 2017 lúc 21:22

\(B=x^2-2x+y^2-4x+7=x^2-6x+9+y^2-2=\left(x-3\right)^2+y^2-2\)\(\left(x-3\right)^2\ge0\)\(y^2\ge0\) nên \(B\ge-2\)

đẳng thức xảy ra khi và chỉ khi \(x=3\)\(y=0\)

vậy MIN B = -2 tại x=3 và y=0

Bình luận (0)
DQ
3 tháng 6 2017 lúc 21:23

mình nghĩ là theo đề thì chỗ kia phải là -4y chứ sao lại -4x nhỉ ???

Bình luận (2)
CD
Xem chi tiết
ND
8 tháng 11 2015 lúc 15:58

\(M=\left(x^2+4x+4\right)+1=\left(x+2\right)^2+1\ge0+1=1\)

\(Mmin=1\) khi x+2 = 0 => x = -2

Bình luận (0)
PK
8 tháng 11 2015 lúc 15:59

M=x2 +4x +5

=>M=x(x+4)+5

Ta có:

x(x+4) lớn hơn hoặc bằng 0

=>x(x+4)+5 lớn hơn hoặc bằng 5

=>M lớn hơn hoặc bằng 5

Dấu "=" xảy ra <=> x = 0 hoặc x+4=0 => x= - 4

Vậy M đạt GTNN là 5 <=> x=0 hoặc x= -4

 

Bình luận (0)
TT
Xem chi tiết
DH
27 tháng 7 2017 lúc 16:56

\(P=\frac{x^2-2x+1989}{x^2}\)

\(\Leftrightarrow Px^2=x^2-2x+1989\)

\(\Leftrightarrow x^2\left(1-P\right)-2x+1989=0\)

\(\Delta=4-4\left(1-P\right)1989\ge0\)

\(\Leftrightarrow P\ge\frac{1988}{1989}\)có GTNN là \(\frac{1988}{1989}\)

Dấu "=" xảy ra \(\Leftrightarrow x=1989\)

Vậy \(P_{min}=\frac{1988}{1989}\) tại x = 1989

Bình luận (0)
NN
Xem chi tiết
DH
14 tháng 3 2017 lúc 13:56

a ) \(A=\left|2x-2\right|+\left|2x-2019\right|\ge\left|2-2x+2x-2019\right|=\left|2-2019\right|=2017\)

Để A đạt GTNN là 2017 <=> \(\left(2-2x\right)\left(2x-2019\right)\ge0\Rightarrow1\le x\le\frac{2019}{2}\)

b ) \(\left|2x-4\right|-\left|6-3x\right|=-1\)

\(\Leftrightarrow2\left|x-2\right|-3\left|x-2\right|=-1\)

\(\Leftrightarrow-\left|x-2\right|=-1\)

\(\Rightarrow\left|x-2\right|=1\)

\(\Rightarrow x=1;3\)

Mà x lớn nhất => x = 3

Bình luận (0)
VL
Xem chi tiết
TD
Xem chi tiết
EC
29 tháng 7 2019 lúc 15:08

Ta có:

A = -x2 - 4x - 2 = -(x2 +  4x + 4) + 2 = -(x + 2)2 + 2

Ta luôn có: -(x + 2)2 \(\le\)\(\forall\)x

=> -(x + 2)2 + 2 \(\le\)\(\forall\)x

Dấu "=" xảy ra <=> x + 2 = 0 <=> x = -2

Vậy Max của A = 2 tại x = -2 

(xem lại đề)

Bình luận (0)