Cho a,b,c,d là các số tự nhiên khác 0 và a/b < c/d. Hãy chứng minh rằng a x d < c x b
cho các số hữu tỉ x=a/b, y=c/d,b>0,d>0 và các số tự nhiên m, n với m khác 0, n khác 0.Chứng minh rằng nếu a/b < c/d thì a/b < m.a+ n.c/m.b + n.d < c/d
Cho a , b , c, d là các số tự nhiên khác 0 . Chứng minh rằng số :
A = a/a+b+c + b/a+b+d + c/b+c+d + d/a+a+d ko phải là số tự nhiên
Cho a, b, c, d là các số tự nhiên khác 0 và a/b < c/d. Chứng tỏ rằng a × d < b × c
cho các số tự nhiên a,b,c,d đôi một khác nhau và khác 0 thỏa mãn a^2+d^2=b^2+c^=P. chứng minh rằng P là hợp số
cho các số hữu tỉ x=a/b; y= c/d ; b > 0 ; d< 0 và các số tự nhiên m,n với m # 0 . chứng minh rằng:
nếu a/b < c/d thì a/b < ma + nc / mb + nd < c/d
help me
Vì x < y nên a/b<c/d
=>a.b+a.d<b.c+b.a
=>a.(b+d)<b.(c+a)
=>a/b<c+a/b+d
=>a/b<c+a/b+d<c/d
Cho \(\frac{a}{b}\)=\(\frac{c}{d}\), với a, b, c và d là các số tự nhiên khác 0. Kí hiệu (x;y) và [x;y] tương ứng là ước chung lớn nhất và bội chung nhỏ nhất của hai số tự nhiên x và y.
Chứng minh rằng \(\frac{\left(a;d\right)}{\left(b;c\right)}=\frac{\left[b;c\right]}{\left[a;d\right]}\)
1. Cho a,b,c,d là các số tự nhiên khác 0 và a/b bé hơn c/d . Chứng tỏ rằng a * d bé hơn b * c.
2. Cho a,b,c là các số tự nhiên khác 0. Chứng tỏ rằng :
a). a/a+b + b/b+c + c/c+a lớn hơn 1
b). b/a+b + c/b+c + a/c+a bé hơn 2
Các bạn nhớ ghi lời giải chi tiết nhé !
Cho a, b, c, d là các số tự nhiên khác 0. Chứng minh rằng :
\(A=\frac{a}{a+b+c}+\frac{b}{a+b+d}+\frac{c}{b+c+d}+\frac{d}{a+c+d}\)không phải là số tự nhiên
Do a;b;c và d là các số tự nhiên >0 =>
a + b + c < a + b + c + d
a + b + d < a + b + c + d
a + c + d < a + b + c + d
b + c + d < a + b + c + d
=> a/(a + b + c) > a/(a + b + c + d) (1)
b/(a + b + d) > b/(a + b + c + d) (2)
c/(b + c + d) > c/(a + b + c + d) (3)
d/(a + c + d) > d/(a + b + c + d) (4)
Từ (1);(2);(3) và (4)
=> a/(a + b + c) + b/(a + b + d) + c/(b + c + d) + d/(a + c + d) > a/(a + b + c + d) + b/(a + b + c + d) + c/(a + b + c + d) + d/(a + b + c + d)
=> a/(a + b + c) + b/(a + b + d) + c/(b + c + d) + d/(a + c + d) > (a + b + c + d)/(a + b + c + d)
=> a/(a + b + c) + b/(a + b + d) + c/(b + c + d) + d/(a + c + d) > 1
=> B > 1 (*)
Ta có: (a + b + c)(a + d) - a(a + b + c + d)
= a² + ad + ab + bd + ac + cd - (a² + ab + ac + ad)
= a² + ad + ab + bd + ac + cd - a² - ab - ac - ad
= bd + cd
Do a;b;c và d là số tự nhiên >0
=> bd + cd > 0
=> (a + b + c)(a + d) - a(a + b + c + d) > 0
=> (a + b + c)(a + d) > a(a + b + c + d)
=> (a + d)/(a + b + c + d) > a/(a + b + c) (5)
Chứng minh tương tự ta được:
(b + c)/(a + b + c + d) > b/(a + b + d) (6)
(a + c)/(a + b + c + d) > c/(b + c + d) (7)
(b + d)/(a + b + c + d) > d/(a + c + d) (8)
Cộng vế với vế của (5);(6);(7) và (8) ta được:
(a + d)/(a + b + c + d) + (b + c)/(a + b + c + d) + (a + c)/(a + b + c + d) + (b + d)/(a + b + c + d) > a/(a + b + c) + b/(a + b + d) + c/(b + c + d) + d/(a + c + d)
=> (a + d + b + c + a + c + b + d)/(a + b + c + d) > B
=> 2(a + b + c + d)/(a + b + c + d) > B
=> 2 > B (*)(*)
Từ (*) và (*)(*)
=> 1 < B < 2
=> B không phải là số tự nhiên
A = a/a+b+c + b/a+b+d + c/b+c+d + d/a+c+d
A > a/a+b+c+d + b/a+b+c+d + c/a+b+c+d + d/a+b+c+d
A > a+b+c+d/a+b+c+d
A > 1 (1)
Áp dụng a/b < 1 => a/b < a+m/b+m (a,b,m thuộc N*)
A = a/a+b+c + b/a+b+d + c/b+c+d + d/a+c+d
A < a+d/a+b+c+d + b+c/a+b+c+d + a+c/a+b+c+d + d+b/a+b+c+d
A < 2.(a+b+c+d)/a+b+c+d
A < 2 (2)
Từ (1) và (2) => 1 < A < 2
=> A không phải số nguyên ( đpcm)
cho các số hữu tỉ x=a/b; y= c/d ; b > 0 ; d< 0 và các số tự nhiên m,n với m # 0 . chứng minh rằng: nếu a/b < c/d thì a/b < ma + nc / mb + nd < c/d