Những câu hỏi liên quan
DL
Xem chi tiết
LT
5 tháng 8 2017 lúc 20:47

34n + 1 + 2 = 34n.3 + 2 = (34)n.3 + 2 = (...1)n.3 + 2 = (...1).3 + 2 = (...3) +2 = (....5)

Vì 34n + 1 + 2 có chữ số tận cùng là 5 nên 34n +1 + 2 \(⋮\)5

Bình luận (0)
BS
5 tháng 8 2017 lúc 20:55

Ta có:   \(3^{4n+1}+2=3^{4n}.3+2\)mà \(3^{4n}\) có chữ số tận cùng là 1

=> \(3^{4n}.3+2=\left(...1\right).3+2\)

                            \(=\left(...5\right)⋮5\forall n\in N\)

Bình luận (0)
DL
Xem chi tiết
H24
Xem chi tiết
H24
5 tháng 8 2017 lúc 20:57

Vì \(7^{4n}-1=\left(......1\right)-1=0⋮5\)

Bình luận (0)
KM
5 tháng 8 2017 lúc 20:58

Ta có : \(7^{4n}-1=\left(7^4\right)^n-1=2401^n-1\)

Ta thấy 2401 tận cùng bằng 1 nên \(2401^n\)tận cùng bằng 1 nên \(2401^n-1\)tận cùng bằng 0 suy ra chia hết cho 5 nên \(7^{4n}-1\)chia hết cho 5

Vậy .......

ok  , tiện thì kb :v

Bình luận (0)
TT
5 tháng 8 2017 lúc 21:00

7^4n - 1 chia hết 5

=> (....1) - 1 = (....0) chia hết 5 (đcm)

Bình luận (0)
DL
Xem chi tiết
TA
13 tháng 8 2017 lúc 16:28

Ta có:24n+2+1

=(24)n x 4+1

=16n x 4+1

=(.....6)x 4+1

=(......4)+1=(.....5)

Vì 24n+2có chữ số tận cùng là 5 nên 24n+2chia hết cho 5 với mọi n

Bình luận (0)
H24
Xem chi tiết
DH
5 tháng 8 2017 lúc 20:57

Ta có :

\(2^{4n+2}=4^{2n+1}=\left(5-1\right)^{2n+1}\overline{=}-1\left(mod5\right)\)

\(\Rightarrow2^{4n+2}+1\overline{=}\left(-1\right)+1=0\left(mod5\right)\)

Hay \(2^{4n+2}+1⋮5\) (đpcm)

Bình luận (0)
NT
Xem chi tiết
KL
5 tháng 8 2017 lúc 22:08

Ta có : 24n = (24)n = 16n = \(\overline{...6}\)
=> 24n+1 = 16n.2 = \(\overline{...2}\)
=> 24n+1 + 3 = \(\overline{...5}⋮5\)
=> đpcm
@Nguyệt Hàn Tuyết

Bình luận (0)
HH
Xem chi tiết
NT
30 tháng 10 2020 lúc 21:49

1)

a) Ta có: \(3n+2⋮n-1\)

\(\Leftrightarrow3n-3+5⋮n-1\)

\(3n-3⋮n-1\forall n\)

nên \(5⋮n-1\)

\(\Leftrightarrow n-1\inƯ\left(5\right)\)

\(\Leftrightarrow n-1\in\left\{1;-1;5;-5\right\}\)

hay \(n\in\left\{2;0;6;-4\right\}\)

mà n∈N

nên \(n\in\left\{0;2;6\right\}\)

Vậy: Khi \(n\in\left\{0;2;6\right\}\) thì \(3n+2⋮n-1\)

b) Ta có: \(n^2+2n+7⋮n+2\)

\(\Leftrightarrow n\left(n+2\right)+7⋮n+2\)

\(n\left(n+2\right)⋮n+2\)

hay \(7⋮n+2\)

\(\Leftrightarrow n+2\inƯ\left(7\right)\)

\(\Leftrightarrow n+2\in\left\{1;-1;7;-7\right\}\)

\(\Leftrightarrow n\in\left\{-1;-3;5;-9\right\}\)

mà n∈N

nên n=5

Vậy: Khi n=5 thì \(n^2+2n+7⋮n+2\)

2)

a) Ta có: \(2^{4n+2}+1\)

\(=2^{2\left(2n+1\right)}+1\)

\(=4^{2n+1}+1\)

\(4^{2n+1}\) luôn có chữ số tận cùng là 4(2n+1 luôn lẻ ∀n∈N)

nên \(4^{2n+1}+1\) luôn có chữ số tận cùng là 5 ∀n∈N

hay \(2^{4n+2}+1⋮5\forall n\in N\)

Bình luận (0)
 Khách vãng lai đã xóa
NH
Xem chi tiết
HT
Xem chi tiết
ND
3 tháng 7 2017 lúc 20:39

a,2^4n+1 có chữ số tận cùng luôn là 2 Do đó 2^4n+1  +3 chia hết cho 5                                                                                                           b,7^4n      _____________________1_____7^4n  -1 luôn __________5

Bình luận (0)