Cho x+2y=8 tìm gtln của B=xy
Help me
1 cho biểu thức A=5x(xy^2-2xy)-5x^2y^2. Rút gọn A .b) Tính GT của A khi x=-1/2 ,y=2
2. Tìm GTLN của bt A = |x-7|-|x-9|.Q= |x-2|+|x-8| b) tìm GTLN của bt P= 9-2|x-3|
a) cho a + b =2 . Tìm GTNN của A= \(^{a^2+b^2}\)
b) cho x+2y=8. Tìm GTLN của B =xy
a) \(A=a^2+b^2\ge\frac{\left(a+b\right)^2}{1+1}=\frac{4}{2}=2\)
A min = 2 khi a =b =1
b) x = 8 -2y => \(B=xy=\left(8-2y\right)y=-2y^2+8y-8+8=-2\left(y-2\right)^2+8\le8\)
B max = 8 khi y = 2 ; x = 4
B1: cho x-2y=2. tìm GTNN của Q= \(x^2+2y^2-x+3y\)
B2: a) tìm GTLN của P=\(x^2+y^2+xy+x+y\)
b) tìm GTLN của Q=\(-5x^2-2xy-2y^2+14x+10y-1\)
Bài 2 :
a) \(P=x^2+y^2+xy+x+y\)
\(2P=2x^2+2y^2+2xy+2x+2y\)
\(2P=x^2+2xy+y^2+x^2+2x+1+y^2+2y+1-2\)
\(2P=\left(x+y\right)^2+\left(x+1\right)^2+\left(y+1\right)^2-2\)
\(P=\frac{\left(x+y\right)^2+\left(x+1\right)^2+\left(y+1\right)^2-2}{2}\)
\(P=\frac{\left(x+y\right)^2+\left(x+1\right)^2+\left(y+1\right)^2}{2}-1\le-1\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x+y=0\\x+1=0\\y+1=0\end{cases}}\)
Mình nghĩ đề phải là tìm GTLN của \(P=x^2+y^2+xy+x-y\)hoặc đổi dấu x và y thì dấu "=" mới xảy ra đc
@ Phương ơi ! Cái dòng \(P=\)cuối ấy . Chỗ đấy là \(\ge-1\)em nhé!
Cho: x+2y=1. Tìm GTLN của A=xy
Lời giải:
$x+2y=1\Rightarrow x=1-2y$. Khi đó:
$A=(1-2y)y=y-2y^2=-(2y^2-y)=-[2(y^2-\frac{y}{2}+\frac{1}{4^2})-\frac{1}{8}]$
$=\frac{1}{8}-2(y-\frac{1}{4})^2\leq \frac{1}{8}$
Vậy $A_{\max}=\frac{1}{8}$.
Giá trị này đạt tại $y-\frac{1}{4}=0\Leftrightarrow y=\frac{1}{4}$
$x=1-2.\frac{1}{4}=\frac{1}{2}$
Cho x+2y=1. Tìm GTLN của xy
Tìm số nguyên x; y biết
x.y = - 21
(x+1).(y+2) = 7
x.(2y+1) = 6
xy - 2x - 2y = 0
HELP ME!!!!!!!!
a)
x | 1 | -1 | 12 | -12 | 2 | -2 | 6 | -6 | 3 | -3 | 4 | -4 |
y-3 | -12 | 12 | -1 | 1 | -6 | 6 | -2 | 2 | -4 | 4 | -3 | 3 |
y | -9 | 15 | 2 | 4 | -3 | 9 | 1 | 5 | -1 | 7 | 0 | 6 |
b)
x | 1 | -1 | 3 | -3 | 7 | -7 | 21 | -21 |
y | -21 | 21 | -7 | 7 | -3 | 3 | -1 | 1 |
c)
2x-1 | 1 | -1 | 5 | -5 | 7 | -7 | 35 | -35 |
2y+1 | -35 | 35 | -7 | 7 | -5 | 5 | -1 | 1 |
x | 1 | 0 | 3 | -2 | 4 | -3 | 18 | -17 |
y | -18 | 17 | -4 | 3 | -3 | 2 | -1 | 0 |
e)
2x+1 | 1 | -1 | 5 | -5 | 11 | -11 | 55 | -55 |
3y-2 | -55 | 55 | -11 | 11 | -5 | 5 | -1 | 1 |
x | 0 | -1 | 2 | -3 | 5 | -6 | 27 | -28 |
y | loại | 19 | -3 | loại | -1 | loại | loại | 1 |
Những câu còn lại mk hổng bt làm đâu
Cho: x+2y=1 tìm GTLN của P= xy
Cho \(\left(x-1\right)\left(y-1\right)\ge1\). Tìm GTLN của \(A=\frac{x^2y+xy^2}{\left(x^2+y^2+8\right)^2.\sqrt{1+x^2y^2}}\)
Cho a+b=3.Tìm GTNN của A=\(a^2+b^2\)
Cho x+2y=8 .Tìm GTLN của B=xy
Áp dụng BĐT Bunhiacopxki :
\(\left(1+1\right)\left(a^2+b^2\right)\ge\left(a+b\right)^2\)
\(\Leftrightarrow a^2+b^2\ge\frac{\left(a+b\right)^2}{2}=\frac{3^2}{2}=\frac{9}{2}\)
Dấu "=" xảy ra \(\Leftrightarrow a=b=\frac{3}{2}\)
____
\(x+2y=8\Leftrightarrow x=8-2y\)
\(B=xy=y\left(8-2y\right)\)
\(\Leftrightarrow B=-2\left(y^2-4y\right)\)
\(\Leftrightarrow B=-2\left(y^2-4y+4-4\right)\)
\(\Leftrightarrow B=-2\left[\left(y-2\right)^2-4\right]=8-2\left(y-2\right)^2\le8\forall y\)
Dấu "=" xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}y=2\\x=4\end{matrix}\right.\)