Những câu hỏi liên quan
NN
Xem chi tiết
NT
Xem chi tiết
AT
24 tháng 6 2021 lúc 17:09

Vì \(x^y+1=z\Rightarrow z>x,y\Rightarrow z\) lẻ

Xét \(x\) lẻ \(\Rightarrow x^y+1\) chẵn \(\Rightarrow\) vô lý \(\Rightarrow x\) chẵn \(\Rightarrow x=2\Rightarrow2^y+1=z\)

Xét \(y=2\Rightarrow z=5\Rightarrow\) thỏa

Xét \(y>2\Rightarrow y\) lẻ \(\Rightarrow y=2k+1\Rightarrow2^{2k+1}+1=z\Rightarrow4^k.2+1=z\)

Vì 4 chia 3 dư 1 \(\Rightarrow4^k\) cũng chia 3 dư 1

\(\Rightarrow4^k.2+1⋮3\Rightarrow z=3\Rightarrow2^y=2\Rightarrow y=1\) (vô lý)

Vậy bộ (x,y,z) thỏa là (2,2,5)

 

Bình luận (0)
H24
24 tháng 6 2021 lúc 17:07

Ta có x, y nguyên tố và xy + 1 = z

=> z > 3

Mà z là số nguyên tố

=> z lẻ => xy chẵn => x = 2

Xét y = 2 => z = 5 (thỏa mãn)

Xét y > 2:

Đặt y = 2k +1 (\(k\in N\) *)

=> 22k+1 + 1 = z

=> 2.4k + 1 = z

Có \(4^k\equiv1\left(mod3\right)\) => 2.4k + 1 chia hết cho 3

=> z chia hết cho 3 (loại)

KL x = 2, y = 2, z = 5
 

Bình luận (1)
NL
Xem chi tiết
NL
Xem chi tiết
ND
Xem chi tiết
MD
Xem chi tiết
TA
Xem chi tiết
HV
Xem chi tiết
PT
Xem chi tiết
NH
1 tháng 7 2016 lúc 19:25

Bài toán không có lời giải vì không có số nguyên tố âm nên không có kết quả cho bài toán này

Bình luận (0)