Những câu hỏi liên quan
NH
Xem chi tiết
AH
6 tháng 1 2024 lúc 0:05

Lời giải:
Áp dụng BĐT Cô-si:
a^3+2b^3=a^3+b^3+b^3\geq 3\sqrt[3]{a^3b^6}=3ab^2$

$a^3+1+1\geq 3a$

$b^3+1+1\geq 3b$

Cộng theo vế các BĐT trên:

$a^3+2b^3+(a^3+2)+2(b^3+2)\geq 3ab^2+3a+6b$

$\Leftrightarrow 2(a^3+2b^3)+6\geq 3(ab^2+a+2b)=3.4=12$

$\Rightarrow a^3+2b^3\geq (12-6):2=3$

Ta có đpcm.

Dấu "=" xảy ra khi $a=b=1$

Bình luận (0)
HP
Xem chi tiết
VN
17 tháng 6 2016 lúc 10:06

undefined

Bình luận (3)
DT
17 tháng 6 2016 lúc 10:08

VT=2a2b2+2a2c2+2b2c2-a4-b4-c4

=a2b2+a2c2+b2c2+a2.(b2-a2)+b2.(c2-b2)+c2.(a2-c2)

=a2b2+a2c2+b2c2+a2.(b+a)(b-a)+b2.(c+b)(c-b)+c2.(a+c)(a-c)

Ta lại có : a+b>c=>a-c>-b

                 b+c>a=>b-a>-c

                 c+a>b=>c-b>-a

(BĐT tam giác)

=>VT>a2b2+a2c2+b2c2+a2.c.(-c)+b2.a.(-a)+c2.b.(-b)

=0

=>VT>0 =>dpcm

Bình luận (3)
NT
16 tháng 4 2017 lúc 21:13

undefined

Bình luận (0)
TN
Xem chi tiết
LM
Xem chi tiết
NN
Xem chi tiết
HP
Xem chi tiết
OO
16 tháng 6 2016 lúc 14:27

bạn sử dụng BĐT tam giác :

a  <  b + c => a2 < b2 + c2

b < a + c => b2 < a2 + c2

c < a + b => c2 < a2 + b2

bạn tự làm nhé vì mik làm bạn cũng ko chọn mik

Bình luận (0)
TN
16 tháng 6 2016 lúc 15:49

Ta có:A = a+ b+ c- 2a2b- 2b2c- 2a2c= (a2)+ (b2)+ (c2)+ 2a2b- 2b2c- 2a2c+

4a2b= (a2+b2-c2)2-4a2b2

=(a2+b2-c2-2ab)(a2+b2-c2+2ab) (1)

Vì a;b;c là 3 cạnh của tam giác nên c>|a-b| =>c2>(|a-b|)2=(a-b)2

=>c2>a2+b2-2ab =>a2+b2-c2-2ab<0 (2)

lại có a+b>c =>(a+b)2>c2 =>a2+b2-c2 +2ab > 0 (3)

Từ (1)(2)(3) =>A<0 (Đpcm)

Bình luận (0)
HP
16 tháng 6 2016 lúc 17:39

#Thắng: t ko nghĩ ông lại copy trong CHTT đấy, mà sai rồi, đề là CM>0; ông lại CM < 0

Bình luận (0)
CD
Xem chi tiết
H24
Xem chi tiết
LK
23 tháng 7 2018 lúc 12:23

Cho a + b + c = 0

Ta có : (a + b + c)2 = a2 + b2 + c2 + 2ab + 2bc + 2ac

⇒ 0 = a2 + b2 + c2 + 2ab + 2bc + 2ac

⇒ a2 + b2 + c2 = - 2(ab + bc + ac)

⇒ (a2 + b2 + c2)2 = 4(ab + bc + ac)2

⇒ a4 + b4 + c4 + 2(a2b2 + a2c2 + b2c2) = 4[a2b2 + b2c2 + a2c2 + 2abc(a + b + c)]

⇒ a4 + b4 + c4 = 4(a2b2 + b2c2 + a2c2 + 0) - 2(a2b2 + b2c2 + a2c2)

⇒ a4 + b4 + c4 = 2(a2b2 + b2c2 + a2c2)

Bình luận (0)
H24
Xem chi tiết