cho tam giác ABC có AB=AC =3cm . Gọi M là điểm thuộc đáy BC , kẻ MD//AC ; ME//AB . Tính chu vi tứ giác ADME ?
cho tam giác ABC có AB=BC=3cm ,Gọi M thuộc đáy BC. MD//AC, ME//AB (D thuộc AB) , E thuộc AC. tính chu vi tứ giác ADME
cho tam giác ABC cân tại A . Gọi M là điểm bất kỳ thuộc cạnh đáy BC . Từ M kẻ ME //AB ( E thuộc AC ) và MD // AC ( D thuộc AB )
a, chứng minh ADME là hình bình hành
b, chứng minh tam giác MEC cân và MD + ME = AC
c, xác định vị trí của M trên cạnh BC ADME là hình thoi
a) Xét tứ giác ADME có
AD//ME
DM//AE
Do đó: ADME là hình bình hành
b) Xét ΔEMC có \(\widehat{EMC}=\widehat{C}\left(=\widehat{B}\right)\)
nên ΔEMC cân tại E
Suy ra: EM=EC
Ta có: AE+EC=AC(E nằm giữa A và C)
mà AE=DM(AEMD là hình bình hành
mà EM=EC(cmt)
nên AC=MD+ME
Cho tam giác vuông ABC vuông tại A, biết AB= 6cm, AC=8 cm. M là trung điểm của BC kẻ ME vuông góc AC( E thuộc AC), MD vuông góc AB( D thuộc AB)
a) tính BC và diện tích của tam giác ABC?
b) tứ giác ADME là hình gì? vì sao?
c) gọi K là trung điểm của MD. chứng minh 3 điểm B, K, E thẳng hàng
a: \(BC=\sqrt{6^2+8^2}=10\left(cm\right)\)
\(S_{ABC}=\dfrac{1}{2}\cdot6\cdot8=24\left(cm^2\right)\)
b: Xét tứ giác ADME có
góc ADM=góc AEM=góc DAE=90 độ
nên ADME là hình chữ nhật
c: Xét ΔABC có
M là trung điểm của BC
ME//AB
Do đó E là trung điểm của AC
Xét ΔABC có
M là trung điểm của BC
MD//AC
Do đó: D là trung điểm của AB
=>ME//BD và ME=BD
=>MEDB là hình bình hành
=>MD cắtEB tại trung điểm của mỗi đường
=>B,K,E thẳng hàng
Cho tam giác ABC có AB=AC= 3 cm gọi M là điểm thuộc cạnh BC. Kẻ MD song song với AC, ME song song với AB (D thuộc AB, E thuộc AC) Tính chu vi tứ giác ADME
Cho tam giac abc có ab=3cm;ac=4cm;bc=5cm
a)tam giác abc là tam giác gì ?Tại sao?
b)gọi m là trung điểm của ab trên tia đối của mc lấy D sao cho md=mc.Chứng minh tam giác amc=tam giác bmd và bd song song ac
c)Kẻ trung tuyến be của tam giac abc (e thuộc ac) cắt mc tại g; qua e kẻ ef song song vói ab (f thuộc bc) . Chứng minh ba điểm a g f thẳng hàng
d) chứng minh be^2+cm^2=5/4bc^2
cho tam giác ABC có AB=AC=3cm. Lấy M thuộc BC. Kẻ MD song song vs AC (D thuộc AB), ME song song vs AB (E thuộc AC). Tính chu vi tứ giác ADME
cho tam giác ABC có AB=3cm, AC=4cm, BC=5cm. Kẻ AH vuông góc với Bc ( H thuộc BC ). trên cạnh BC lấy điểm D sao cho BD=BA, trên canh AC lấy điểm M sao cho AM=AH. Gọi N là giao điểm của DM và AH.
a) chứng minh tam giác ABC vuông.
b) chứng minh tam giác ACN cân
a: BC^2=AB^2+AC^2
=>ΔABC vuông tại A
b: góc MAD+góc BAD=90 độ
góc DAH+góc BDA=90độ
góc BAD=góc BDA
=>góc MAD=góc HAD
Xét ΔAHD và ΔAMD có
AH=AM
góc HAD=góc MAD
AD chung
=>ΔAHD=ΔAMD
=>góc AMD=90 độ
Xét ΔAMN vuông tại M và ΔAHC vuông tại H có
AM=AH
góc MAN chung
=>ΔAMN=ΔAHC
=>AN=AC
=>ΔANC cân tại A
Cho tam giác ABC vuông tại A có AB<AC. Gọi M Là trung điểm của BC, kẻ MD vuông góc với AB tại D, ME vuông góc với AC tại E
a) Cm AM=DE
b) Cm tứ giác DMCE là hbh
c) Gọi AH là đường cao của tam giác ABC (H thuộc BC). Cm tứ giác DHME là hình thang cân và DE là trung trực của AH
a: Xét tứ giác ADME có
\(\widehat{ADM}=\widehat{AEM}=\widehat{DAE}=90^0\)
=>ADME là hình chữ nhật
=>AM=DE
b: Xét ΔABC có
M là trung điểm của BC
MD//AC
Do đó: D là trung điểm của AB
Xét ΔABC có
M là trung điểm của BC
ME//AB
Do đó: E là trung điểm của AC
Xét ΔABC có
D,E lần lượt là trung điểm của AB,AC
=>DE là đường trung bình
=>DE//BC và DE=1/2BC
=>DE//MC và DE=MC
Xét tứ giác DMCE có
DE//MC
DE=MC
Do đó: DMCE là hình bình hành
c: ΔHAC vuông tại H có HE là trung tuyến
nên \(HE=\dfrac{1}{2}AC\)
mà \(MD=\dfrac{1}{2}AC\)
nên HE=MD
Xét tứ giác DHME có
ED//MH
nên DHME là hình thang
mà HE=MD
nên DHME là hình thang cân
ΔHAB vuông tại H
mà HD là trung tuyến
nên HD=AD
EA=EH
DA=DH
Do đó: ED là đường trung trực của AH
Cho tam giác ABC cân tại A. Gọi M là điểm bất kì thuộc cạnh đáy BC. Từ M kẻ ME // AB ( \(E\in AC\)) và MD//AC (\(D\in AB\))
a) C/m ADEM là hình bình hành
b) C/m tam giác MEC cân và MD+ME=AC
Giúp mik với!!!!