Những câu hỏi liên quan
DP
Xem chi tiết
DB
21 tháng 4 2023 lúc 21:19

loading...loading...loading...

Học tốt  nha !

Bình luận (2)
HV
Xem chi tiết
NL
Xem chi tiết
MY
Xem chi tiết
NH
Xem chi tiết
NA
23 tháng 11 2021 lúc 18:49

16D

17C

18C

19B

20A

 

Bình luận (0)
LL
23 tháng 11 2021 lúc 18:51

Câu 16Chọn câu sai.

A. (x + y)2 = (x + y)(x + y)       

B. x2 – y2 = (x + y)(x – y)

C. (-x – y)2 = (-x)2 – 2(-x)y + y2

D. (x + y)(x + y) = y2 – x2

Câu 17Chọn câu đúng

A. (c + d)2 – (a + b)2 = (c + d + a + b)(c + d – a + b)

B. (c – d)2 – (a + b)2 = (c – d + a + b)(c – d – a + b)

C. (a + b + c – d)(a + b – c + d) = (a + b)2 – (c – d)2

D. (c – d)2 – (a – b)2 = (c – d + a – b)(c – d – a – b)

Câu 18Có bao nhiêu giá trị x thỏa mãn (2x – 1)2 – (5x – 5)2 = 0

A. 0                               B. 1                                     C. 2                                D. 3

Câu 19Có bao nhiêu giá trị x thỏa mãn (2x + 1)2 – 4(x + 3)2 = 0

A. 0                                B. 1                                    C. 2                                 D. 3

Câu 20:Tìm x biết (x – 6)(x + 6) – (x + 3)2 = 9

A. x = -9                     B. x = 9                        C. x = 1                                     D. x = -6

Câu 8: B  

Bình luận (0)
H24
23 tháng 11 2021 lúc 18:51

16. D

17. C

18. C

19. B

20. A

Bình luận (0)
PT
Xem chi tiết
PT
Xem chi tiết
KT
4 tháng 4 2018 lúc 20:45

cái này có trong đề thi lớp 8 của Đô Lương (2017-2018) nè

Bình luận (2)
KT
6 tháng 4 2018 lúc 20:47

Câu trả lời là đúng với mọi x và \(a\ne b\ne c\)

Bình luận (0)
MY
Xem chi tiết
TV
13 tháng 9 2018 lúc 13:24

1)Áp dụng Bunyakovsky:

\(\left(x^2+y^2+z^2\right)\left(a^2+b^2+c^2\right)\ge\left(ax+by+cz\right)^2\)

\("="\Leftrightarrow\dfrac{x}{a}=\dfrac{y}{b}=\dfrac{z}{c}\)

b) Đề sai thì phải

Bình luận (2)
NG
Xem chi tiết
PB
Xem chi tiết
LG
1 tháng 1 2018 lúc 9:57

ChươngII *Dạng toán rútg gọn phân thức

Bài 1.Rút gọn phân thức

a. \(\dfrac{3x\left(1-x\right)}{2\left(x-1\right)}=\dfrac{-3x\left(x-1\right)}{2\left(x-1\right)}=-\dfrac{3x}{2}\)

b.\(\dfrac{6x^2y^2}{8xy^5}=\dfrac{3x.2xy^2}{4y^3.2xy^2}=\dfrac{3x}{4y^3}\)

c.\(\dfrac{23\left(x-y\right)\left(x-z\right)^2}{6\left(x-y\right)\left(x-z\right)}=\dfrac{23\left(x-z\right)}{6}\)

Bình luận (0)
LG
1 tháng 1 2018 lúc 10:11

Bài 2 rút gọn các phân thức sau:

a.\(\dfrac{x^2-16}{4x-x^2}=\dfrac{\left(x-4\right)\left(x+4\right)}{-x\left(x-4\right)}=-\dfrac{x+4}{x}\)(x khác 0,x khác 4)

b.\(\dfrac{x^2+4x+3}{2x+6}=\dfrac{x^2+3x+x+3}{2\left(x+3\right)}=\dfrac{\left(x+3\right)\left(x+1\right)}{2\left(x+3\right)}=\dfrac{x+1}{2}\)

( x \(\ne-3\) )

c.\(\dfrac{15x\left(x+y\right)^3}{5y\left(x+y\right)^2}=\dfrac{3x\left(x+y\right)}{y}\) (y+(x+y) khác 0)

d. \(\dfrac{5\left(x-y\right)-3\left(y-x\right)}{10\left(x-y\right)}=\dfrac{5\left(x-y\right)+3\left(x-y\right)}{10\left(x-y\right)}=\dfrac{8\left(x-y\right)}{10\left(x-y\right)}=\dfrac{4}{5}\)

(x khác y)

e.\(\dfrac{2x+2y+5x+5y}{2x+2y-5x-5y}=\dfrac{2\left(x+y\right)+5\left(x+y\right)}{2\left(x+y\right)-5\left(x+y\right)}=\dfrac{7\left(x+y\right)}{-3\left(x+y\right)}=-\dfrac{7}{3}\)

(x khác -y)

f.\(\dfrac{x^2-xy}{3xy-3y^2}=\dfrac{x\left(x-y\right)}{3y\left(x-y\right)}=\dfrac{x}{3y}\)(x khác y,y khác 0)

g.\(\dfrac{2ax^2-4ax+2a}{5b-5bx^2}=\dfrac{2a\left(x^2-2x+1\right)}{-5b\left(x^2-1\right)}=\dfrac{2a\left(x-1\right)^2}{-5b\left(x-1\right)\left(x+1\right)}=\dfrac{2a\left(x-1\right)}{-5b\left(x+1\right)}\)

\ (b khác 0,x khác +-1)

h. \(\dfrac{4x^2-4xy}{5x^3-5x^2y}=\dfrac{4x\left(x-y\right)}{5x^2\left(x-y\right)}=\dfrac{4x}{5x^2}\)

(x khác 0,x khác y)

i.\(\dfrac{\left(x+y\right)^2-z^2}{x+y+z}=\dfrac{\left(x+y+z\right)\left(x+y-z\right)}{x+y+z}=x+y-z\)

(x+y+z khác 0)

k.\(\dfrac{x^6+2x^3y^3+y^6}{x^7-xy^6}=\dfrac{\left(x^3\right)^2+2x^3y^3+\left(y^3\right)^2}{x\left(x^6-y^6\right)}=\dfrac{\left(x^3+y^3\right)^2}{x\left(x^3-y^3\right)\left(x^3+y^3\right)}=\dfrac{x^3+y^3}{x\left(x^3-y^3\right)}\)

(x khác 0,x khác +-y)

Bình luận (0)
LG
1 tháng 1 2018 lúc 10:32

Bài 4 : Rút gọn các phân thức sau :

\(a,\dfrac{\left(a+b\right)^2-c^2}{a+b+c}=\dfrac{\left(a+b+c\right)\left(a+b-c\right)}{a+b+c}=a+b-c\)

\(b,\dfrac{a^2+b^2-c^2+2ab}{a^2-b^2+c^2+2ac}=\dfrac{\left(a^2+2ab+b^2\right)-c^2}{\left(a^2+2ac+c^2\right)-b^2}\)

\(=\dfrac{\left(a+b\right)^2-c^2}{\left(a+c\right)^2-b^2}=\dfrac{\left(a+b+c\right)\left(a+b-c\right)}{\left(a+b+c\right)\left(a+c-b\right)}=\dfrac{a+b-c}{a+c-b}\)

c,\(\dfrac{2x^3-7x^2-12x+45}{3x^3-19x^2+33x-9}\)

\(=\dfrac{\left(2x^3-x^2-15x\right)-\left(6x^2-3x-45\right)}{\left(3x^3-10x^2+3x\right)-\left(9x^2-30x+9\right)}\)

\(=\dfrac{x\left(2x^2-x-15\right)-3\left(2x^2-x-15\right)}{x\left(3x^2-10x+3\right)-3\left(3x^2-10x+3\right)}\)
\(=\dfrac{\left(x-3\right)\left(2x^2-x-15\right)}{\left(x-3\right)\left(3x^2-10x+3\right)}\)

\(=\dfrac{\left(x-3\right)\left(2x^2+5x-6x-15\right)}{\left(x-3\right)\left(3x^2-9x-x+3\right)}\)
\(=\dfrac{\left(x-3\right)\left[x\left(2x+5\right)-3\left(2x+5\right)\right]}{\left(x-3\right)\left[3x\left(x-3\right)-\left(x-3\right)\right]}\)

\(=\dfrac{\left(x-3\right)^2\left(2x+5\right)}{\left(x-3\right)^2\left(3x-1\right)}\)

\(=\dfrac{2x+5}{3x-1}\)

Bình luận (0)