Chứng tỏ rằng 90 và 143 là 2 số nguyên tố cùng nhau
chứng tỏ rằng: 90 và 143 là 2 số nguyên tố cùng nhau
90=2.3^2.5
143=11.13
mà 90 và 143 ko có TSNT chung ---> 90 và 143 là 2 số NT cùng nhau
vậy ....
B1: tìm UCLN của 90 và 143 =1 thôi, đơn giản
Cho a và b là hai số nguyên tố cùng nhau. Chứng tỏ rằng a^2 và a+b cũng nguyên tố cùng nhau.
Cho 2 số nguyên tố cùng nhau a và b .Chứng tỏ rằng 2 số 13a+4b và 15a+7b hoặc nguyên tố cùng nhau hoặc có 1 ước chung là 31
1.Chứng tỏ rằng hai số lẻ liên tiếp là hai số nguyên tố cùng nhau
2.Chứng minh rằng với mọi số tự nhiên , các số sau là các số nguyên tố cùng nhau.
a) n+1 và n+2 b)2n+2 và 2n+3
c)2n+1 và n+1 d)n+1 và 3n+4
Bài 1: Gọi hai số lẻ liên tiếp là $2k+1$ và $2k+3$ với $k$ tự nhiên.
Gọi $d=ƯCLN(2k+1, 2k+3)$
$\Rightarrow 2k+1\vdots d; 2k+3\vdots d$
$\Rightarrow (2k+3)-(2k+1)\vdots d$
$\Rightarrow 2\vdots d\Rightarrow d=1$ hoặc $d=2$
Nếu $d=2$ thì $2k+1\vdots 2$ (vô lý vì $2k+1$ là số lẻ)
$\Rightarrow d=1$
Vậy $2k+1,2k+3$ nguyên tố cùng nhau.
Ta có đpcm.
Bài 2:
a. Gọi $d=ƯCLN(n+1, n+2)$
$\Rightarrow n+1\vdots d; n+2\vdots d$
$\Rightarrow (n+2)-(n+1)\vdots d$
$\Rightarrow 1\vdots d\Rightarrow d=1$
Vậy $(n+1, n+2)=1$ nên 2 số này nguyên tố cùng nhau.
b.
Gọi $d=ƯCLN(2n+2, 2n+3)$
$\Rightarrow 2n+2\vdots d; 2n+3\vdots d$
$\Rightarrow (2n+3)-(2n+2)\vdots d$ hay $1\vdots d$
$\Rightarrow d=1$.
Vậy $(2n+2, 2n+3)=1$ nên 2 số này nguyên tố cùng nhau.
Bài 2:
c.
Gọi $d=ƯCLN(2n+1, n+1)$
$\Rightarrow 2n+1\vdots d; n+1\vdots d$
$\Rightarrow 2(n+1)-(2n+1)\vdots d$
$\Rightarrow 1\vdots d\Rightarrow d=1$
Vậy $ƯCLN(2n+1, n+1)=1$ nên 2 số này nguyên tố cùng nhau.
d.
Gọi $d=ƯCLN(n+1, 3n+4)$
$\Rightarrow n+1\vdots d; 3n+4\vdots d$
$\Rightarrow 3n+4-3(n+1)\vdots d$
$\Rightarrow 1\vdots d\Rightarrow d=1$
Vậy $ƯCLN(n+1, 3n+4)=1$
$\Rightarrow$ 2 số này nguyên tố cùng nhau.
Chứng tỏ rằng:2n+1 và 3n+1 là 2 số nguyên tố cùng nhau
\(\Leftrightarrow\left\{{}\begin{matrix}6n+3⋮a\\6n+2⋮a\end{matrix}\right.\Leftrightarrow a=1\)
Vậy: 2n+1 và 3n+1 là hai số nguyên tố cùng nhau
cho a,b là hai số nguyên tố cùng nhau . Chứng tỏ rằng 5a + 2b và 7a + 3b cũng là hai số nguyên tố cùng nhau
chứng tỏ rằng 12n+1 và 30n+2 là 2 số nguyên tố cùng nhau
Gọi d là ƯCLN(12n+1 ; 30n+2)
=> 6(12n + 1 ) - 2(30n + 2 ) chia hết cho d
=> 2 chia hết cho d
Mà 12n+1 lẻ
=> d = 1
Vậy ........
Gọi d là UCLN ( 12n + 1; 30n+2 )
Nên 12n+1 ⋮ d và 30n+ 2 ⋮ d
Nên 5 ( 12n + 1 ) ⋮ d và 2 (30n+ 2 ) ⋮ d
60n + 5 ⋮d và 60n + 4 ⋮d
Thì : [ (60n + 5 ) - ( 60n + 4 )]
1 ⋮d
Vậy 12n + 1 và 30n + 2 là 2 số nguyên tố cùng nhau
Chứng tỏ rằng 2 số n+1 và 3n+4 là 2 số nguyên tố cùng nhau
cho a và b là hai số nguyên tố cùng nhau . chứng tỏ rằng ab và a+b nguyên tố cùng nhau
bạn giả sử 2 số đó ko nguyên tố cùng nhau thì có ước chung nguyên tố là d(d là số tự nhiên khác 0 và >1).
ta có:ab chia hết cho d =>a hoặc b chia hết cho b.
và a chia hết cho d
thử từng trường hợp ra là xong!