Những câu hỏi liên quan
HK
Xem chi tiết
HK
Xem chi tiết
H24
Xem chi tiết
CN
19 tháng 8 2018 lúc 20:53

Vì |x-y| \(\ge\)0 với mọi x,y;|x+1|\(\ge\)0 vs mọi x

=>A\(\ge\)2016 vs mọi x,y

=> A đạt giá trị nhỏ nhất khi:\(\hept{\begin{cases}\left|x-y\right|=0\\\left|x+1\right|=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x-y=0\\x+1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=y\\x=-1\end{cases}}\)

vậy với x=y=-1 thì A đạt giá trị nhỏ nhất là 2016

k mik nha

bài này mik từng làm rồi

-----Chúc hok tốt---------

Bình luận (0)
HA
Xem chi tiết
H24
6 tháng 10 2018 lúc 19:29

a) Để \(2018+\sqrt{2018-x}\)  thì \(\sqrt{2018-x}\ge0\Leftrightarrow x\le2018\)

b) Để A đạt giá trị nhỏ nhất thì \(\sqrt{2018-x}\) nhỏ nhất. Mà \(\sqrt{2018-x}\ge0\) nên

\(A=2018+\sqrt{2018-x}\ge2018\)

Vậy \(A_{min}=2018\Leftrightarrow\sqrt{2018-x}=0\Leftrightarrow x=2018\)

Bình luận (0)
VD
Xem chi tiết
DD
4 tháng 4 2017 lúc 5:56

Giá trị nhỏ nhất của A là 2011 (vì A đạt giá trị nhỏ nhất khi /x-y/ + /x+1/ đạt giá trị nhỏ nhất hay bằng 0)

Bình luận (0)
H24
4 tháng 4 2017 lúc 6:59

giá trị nhỏ nhất là 2011

đúng 100% !tk nha

Bình luận (0)
NA
31 tháng 12 2017 lúc 14:32

bằng 2011 là giá trị nhỏ nhất

kết bạn với mình nhé!!!

Bình luận (0)
H24
Xem chi tiết
HH
Xem chi tiết
H24
Xem chi tiết
LF
9 tháng 11 2016 lúc 17:37

Bài 1:

\(A=\left|x-3\right|+\left|x-5\right|+\left|x-7\right|\)

\(\ge x-3+0+7-x=4\)

Dấu = khi \(\begin{cases}x-3\ge0\\x-5=0\\7-x\le0\end{cases}\)\(\Leftrightarrow\begin{cases}x\ge3\\x=5\\x\le7\end{cases}\)\(\Leftrightarrow x=5\)

Vậy MinA=4 khi x=5

Bài 2:

\(B=\left|x-1\right|+\left|x-2\right|+\left|x-3\right|+\left|x-5\right|\)

\(\ge x-1+x-2+3-x+5-x=5\)

Dấu = khi \(\begin{cases}x-1\ge0\\x-2\ge0\\3-x\ge0\\5-x\ge0\end{cases}\)\(\Leftrightarrow\begin{cases}x\ge1\\x\ge2\\x\le3\\x\le5\end{cases}\)\(\Leftrightarrow2\le x\le3\)

 

Bình luận (0)
H24
Xem chi tiết
LL
17 tháng 9 2021 lúc 9:10

\(M=a^2+ab+b^2-3a-3b+2001\)

\(\Rightarrow2M=2a^2+2ab+2b^2-6a-6b+4002\)

\(=\left[\left(a+b\right)^2-2\left(a+b\right).2+4\right]+\left(a^2-2a+1\right)+\left(b^2-2b+1\right)+3996\)

\(=\left(a+b-2\right)^2+\left(a-1\right)^2+\left(b-1\right)^2+3996\ge3996\)

\(\Rightarrow M\ge1998\)

\(minM=1998\Leftrightarrow a=b=1\)

Bình luận (1)