Cho cấp số nhân thỏa mãn u1+u2+u3=13;u4-u1=26 . Tổng 8 số hạng đầu của cấp số nhân (un) là
Cho cấp số nhân u n thỏa mãn u 1 + u 2 + u 3 = 13 u 4 − u 1 = 26 . Tổng 8 số hạng đầu của cấp số nhân u n là
A. S 8 = 1093.
B. S 8 = 3820
C. S 8 = 9841
D. S 8 = 3280
Cho cấp số nhân (un) thỏa mãn u 1 + u 2 + u 3 + u 4 + u 5 = 11 u 1 + u 5 = 82 11 .Tính tổng S 2011
A. q = 1 3 ; S 2011 = 243 22 1 − 1 3 2011
B. q = 3 ; S 2011 = 1 22 3 2011 − 1
C. Cả A, B đúng
D. Cả A, B sai
Chọn C
Ta có S 2011 = u 1 q 2011 − 1 q − 1
q = 1 3 ⇒ S 2011 = 243 22 1 − 1 3 2011
q = 3 ⇒ S 2011 = 1 22 3 2011 − 1
Cho cấp số nhân (un) thỏa mãn u 1 + u 2 + u 3 + u 4 + u 5 = 11 u 1 + u 5 = 82 11 .Tìm công bội và số hạng tổng quát của cấp số
A. q = 3 ; u n = 3 n − 1 11
B. q = 1 3 ; u n = 81 11 . 1 3 n − 1
C. Cả A, B đúng
D. Cả A, B sai
Chọn C
Gọi q là công bội của cấp số. Khi đó ta có
u 1 + u 2 + u 3 + u 4 + u 5 = 11 u 1 + u 5 = 82 11
⇔ u 2 + u 3 + u 4 = 39 11 u 1 + u 5 = 82 11 ⇔ u 1 q + q 2 + q 3 = 39 11 u 1 1 + q 4 = 82 11
Suy ra:
q 4 + 1 q 3 + q 2 + q = 82 39 ⇔ 39 q 4 − 82 q 3 − 82 q 2 − 82 q + 39 = 0
⇔ ( 3 q − 1 ) ( q − 3 ) ( 13 q 2 + 16 q + 13 ) = 0 ⇔ q = 1 3 , q = 3
q = 1 3 ⇒ u 1 = 81 11 ⇒ u n = 81 11 . 1 3 n − 1
q = 3 ⇒ u 1 = 1 11 ⇒ u n = 3 n − 1 11
cho cấp số nhân thỏa u1+u2+u3 = 24 và u1^2+u2^2+u3^2=364, tìm công bội và số hạng đầu
Lời giải:
Gọi $q$ là công bội thì $u_2=u_1q; u_3=u_1q^2$.
Theo bài ra ta có:
$24=u_1+u_2+u_3=u_1+u_1q+u_1q^2=u_1(1+q+q^2)(1)$
$364=u_1^2+u_2^2+u_3^2=u_1^2+(u_1q)^2+(u_1q^2)^2$
$=u_1^2(1+q^2+q^4)(2)$
Từ $(1); (2)\Rightarrow \frac{u_1^2(1+q+q^2)^2}{u_1^2(1+q^2+q^4)}=\frac{24^2}{364}$
$\Leftrightarrow \frac{(1+q+q^2)^2}{1+q^2+q^4}=\frac{144}{91}(*)$
Đặt $q=a; q^2+1=b$ thì:
$(*)\Leftrightarrow \frac{(a+b)^2}{b^2-a^2}=\frac{144}{91}$
$\Rightarrow 91(a+b)^2=144(b^2-a^2)$
$\Leftrightarrow (a+b)(235a-53b)=0$
$\Rightarrow a+b=0$ hoặc $235a-53b=0$
Hiển nhiên $a+b=q^2+q+1>0$ nên $235a-53b=0$
$\Leftrightarrow 53(q^2+1)-235q=0$
Đến đây thì ơơn giản rồi.
Cho cấp số cộng ( u n ) thỏa mãn u 2 - u 3 + u 5 = 10 u 4 + u 6 = 26 . Tính S = u 1 + u 2 + u 7 + . . . + u 2017
A. S =2023736
B. S = 2035825
C. S = 673044
D. S = 3034
Cho cấp số cộng u n thỏa mãn u 2 − u 3 + u 5 = 10 u 4 + u 6 = 26 . Tính S = u 1 + u 4 + u 7 + ... + u 2017
A. S = 2023736
B. S = 2035825
C. S = 673044
D. S = 3034
Đáp án A
u 2 − u 3 + u 5 = 10 u 4 + u 6 = 26 ⇒ u 1 + 3 d = 10 2 u 1 + 8 d = 26 ⇒ u 1 = 1 d = 3 ⇒ S = 2023736
Cho cấp số cộng ( u n ) thỏa mãn u 2 - u 3 + u 5 = 10 u 4 + u 6 = 26 . Tính S = u 1 + u 4 + u 7 + . . . + u 2017
A. S = 2023736
B. S = 2035825
C. S = 673044
D. S = 3034
Cho cấp số nhân ( u n ) có tất cả các số hạng đều dương thoả mãn u 1 + u 2 + u 3 + u 4 = 5 ( u 1 + u 2 ) . Số tự nhiên n nhỏ nhất để u n > 8 100 u 1 là
A. 102.
B. 301.
C. 302.
D. 101.
Cho cấp số cộng (un) và cấp số nhân (vn) thoả mãn: u1 = v1 =2, u2 = v2, v3 = u3 + 4. Xác định cấp số cộng và cấp số nhân ñó.