Tìm số nguyên x để biểu thức sau là số nguyên:
\(\frac{2x-3}{3x-2}\)
Tách phần nguyên của biểu thức sau, rồi tìm giá trị nguyên của x để giá trị của biểu thức cũng là 1 số nguyên:
\(\dfrac{4x^3-3x^2+2x-83}{x-3}\)
Tìm các số nguyên x để biểu thức sau là 1 số nguyên: y=2x-3\(\frac{2x-3}{x-2}\)x-2
Bài 1)tìm số nguyên x để giá trị của các biểu thức sau là số nguyên
a)A=\(\frac{2x^2-5x+3}{2x-5}\) b)B=\(\frac{3x^3+9x^2-x-5}{x+3}\)
cho biểu thức M= 3x+2/2x-3
tìm số nguyên x để m là số nguyên
Tìm x là số nguyên để biểu thức sau có giá trị nguyên
A = \(\frac{3x-4}{2+x}\)
B = \(\frac{2x-5}{3x-9}\)
C = \(\frac{x^2-x+1}{x-2}\)
=> 6x-15 chia hết 3x-9
=> 6x-18+18-15 chia hết 3x-9
=> 2.[3x-9]+3 chia hết 3x-9
=> 3 chia hết cho 3x-9
=> \(3x-9\inƯ\left[3\right]=\left\{-1;1;3;-3\right\}\)
=> \(x\in\left\{4;2\right\}\)
=> 3x-4 chia hết x+2
=> 3x+6-6-4 chia hết x+2
=> 3.[x+2] -6-2 chia hết x+2
=> -8 chia hết x+2
=> \(x+2\inƯ\left[-8\right]=\left\{-1;1;2;-2;4;-4;-8;8\right\}\)
=> \(x\in\left\{-3;-1;0;-4;2;-6;-10;6\right\}\)
=> \(x^2-2x+2x-x+1\) chia hết cho x-2
=> \(x.\left[x-2\right]+3\)chia hết cho x-2
=> 3 chia hết cho x-2
=> x-2 E Ư[3]={-1;1;-3;3]
=> x E {1;3;-1;5}
tìm giá trị nguyên của x để phân thức sau là số nguyên:
\(A=\frac{x^4+3x^3+2x^2+6x-2}{x^2+2}\)
\(A=\frac{\left(x^4+4x^2+4\right)+\left(3x^3+6x\right)-\left(2x^2+4\right)-2}{x^2+2}\)
\(A=\frac{\left(x^2+2\right)^2+3x\left(x^2+2\right)-2\left(x^2+2\right)-2}{x^2+2}\)
\(A=\frac{\left(x^2+2\right)\left(x^2+3x\right)}{x^2+2}-\frac{2}{x^2+2}=x^2+3x-\frac{2}{x^2+2}\)
Để A là số nguyên, mà x là số nguyên nên \(x^2+3x\)nguyên, do đó \(\frac{2}{x^2+2}\inℤ\)
Do \(x^2+2\ge2\) nên \(x^2+2=2\Leftrightarrow x=0\)
1, Tìm x nguyên để phân số sau là số nguyên:
\(\frac{3x+7}{x-1}\)
2, Tìm x nguyên để các biểu thức sau đạt GTLN
\(P=2010-\left(x+1\right)^{2008};Q=1010-|3-x|;C=\frac{5}{\left(x-3\right)^2+1};D=\frac{4}{|x-2|+2}\)
1 Giải :
\(\frac{3x+7}{x-1}\)là phân số <=> x - 1 \(\ne\)0 => x \(\ne\)1
Ta có : \(\frac{3x+7}{x-1}=\frac{3\left(x-1\right)+8}{x-1}=3+\frac{8}{x-1}\)
Để \(\frac{3x+7}{x-1}\)là số nguyên thì 8 \(⋮\)x - 1 => x - 1 \(\in\)Ư(1; -1; 2; -2; 4; -4; 8; -8}
Lập bảng :
x - 1 | 1 | -1 | 2 | -2 | 4 | -4 | 8 | -8 |
x | 2 | 0 | 3 | -1 | 5 | -3 | 9 | -7 |
Vậy x \(\in\){2; 0; 3; -1; 5; -3; 9; -7} thì \(\frac{3x+7}{x-1}\)là số nguyên
Đặt \(A=\frac{3x+7}{x-1}\)
Ta có: \(A=\frac{3x+7}{x-1}=\frac{3x-3+10}{x-1}=\frac{3x-3}{x-1}+\frac{10}{x-1}=3+\frac{10}{x-1}\)
Để \(A\in Z\)thì \(\frac{10}{x-1}\in Z\Rightarrow10⋮x-1\Leftrightarrow x-1\in U\left(10\right)=\left\{\pm1;\pm2;\pm5;\pm10\right\}\)
Ta có bảng sau:
\(x-1\) | \(1\) | \(-1\) | \(2\) | \(-2\) | \(5\) | \(-5\) | \(10\) | \(-10\) |
\(x\) | \(2\) | \(0\) | \(3\) | \(-1\) | \(6\) | \(-4\) | \(11\) | \(-9\) |
Vậy, với \(x\in\left\{-9;-4;-1;0;2;3;6;11\right\}\)thì \(A=\frac{3x+7}{x-1}\in Z\)
a, Ta có: \(-\left(x+1\right)^{2008}\le0\)
\(\Rightarrow P=2010-\left(x+1\right)^{2008}\le2010\)
Dấu " = " khi \(\left(x+1\right)^{2008}=0\Rightarrow x+1=0\Rightarrow x=-1\)
Vậy \(MAX_P=2010\Leftrightarrow x=-1\)
Tìm số nguyên x để biểu thức sau là số nguyên: A=\(\frac{3x-2}{x+3}\)
ta co de A la so nguyen thi
3x - 2 chia het cho x+3
ta co:
3x -2
=x+3+x+3+x+3-11
ma x+3 chia het cho x+3
nen de A nguyen thi -11 chia het cho x+3
ta co:
x+3=-11
x =-14
tìm x là số nguyên để biểu thức sau là số nguên
\(\frac{8-3x}{x+3}\)
\(\frac{8-3x}{x+3}\in Z\Leftrightarrow8-3x⋮x+3\Leftrightarrow8-3x+3x+9⋮x+3\Leftrightarrow17⋮x+3\Leftrightarrow x+3\in\left\{-1;1;-17;17\right\}\)
\(\Leftrightarrow x\in\left\{-4;-2;-20;14\right\}\)
\(\frac{8-3x}{x+3}=\frac{-3x-9+17}{x+3}=\frac{-3\left(x+3\right)+17}{x+3}=-3+\frac{17}{x+3}\)
Để biểu thức nguyên thì \(\frac{17}{x+3}\)nguyên
\(\Rightarrow17⋮x+3\) \(\Rightarrow x+3\varepsilonƯ\left(17\right)=\hept{ }-1;1;-17;17\)
Vậy x = \(-4;-2-20;14\)
\(\frac{8-3x}{x+3}=\frac{-3x+8}{x+3}=\frac{-3x-9+17}{x+3}=-3+\frac{17}{x+3}\)
Để biểu thức nguyên thì \(x+3\inƯ\left(17\right)=\left(-17;-1;1;17\right)\)
+ \(x+3=-17\Rightarrow x=-20\)
+ \(x+3=-1\Rightarrow x=-4\)
+ \(x+3=1\Rightarrow x=-2\)
+ \(x+3=17\Rightarrow x=14\)