Những câu hỏi liên quan
JJ
Xem chi tiết
DL
5 tháng 11 2019 lúc 22:15

Câu 1:

\(3^{2x-1}=27\)

\(\Leftrightarrow3^{2x-1}=3^3\)

\(\Leftrightarrow2x-1=3\)

\(\Leftrightarrow2x=4\)

\(\Leftrightarrow x=2\)

Câu 2:

Ta có: \(1000^9=999.1000^8+1000^8\)

Vì: \(999.1000^8>999.999^8=999^9\)và \(1000^8>999^8\)

\(\Rightarrow1000^9>999^9+999^8\)

Hay: \(B>A\)

Bình luận (0)
 Khách vãng lai đã xóa
H24
5 tháng 11 2019 lúc 22:04

\(C1:\)

\(3^{2x-1}=27\)

\(3^{2x-1}=3^3\)

\(\Rightarrow2x-1=3\)

\(2x=4\)

\(x=2\)

Bình luận (0)
 Khách vãng lai đã xóa
NG
Xem chi tiết
H24
23 tháng 7 2015 lúc 9:23

a)\(A=\frac{1}{2^1}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{49}}+\frac{1}{2^{50}}\)

\(2A=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{48}}+\frac{1}{2^{49}}\)

\(A=1-\frac{1}{2^{50}}

Bình luận (0)
NM
22 tháng 12 2016 lúc 21:10

Bạn Detective_conan giải đúng đấy!

Bình luận (0)
NT
Xem chi tiết
VT
Xem chi tiết
VT
19 tháng 3 2022 lúc 23:46

i giúp em vớiiiiii

 

Bình luận (0)
VT
Xem chi tiết
NT
9 tháng 1 2024 lúc 9:43

\(M=\dfrac{3}{1+2}+\dfrac{3}{1+2+3}+...+\dfrac{3}{1+2+...+2022}\)

\(=\dfrac{3}{\dfrac{2\left(2+1\right)}{2}}+\dfrac{3}{\dfrac{3\left(3+1\right)}{2}}+...+\dfrac{3}{\dfrac{2022\left(2022+1\right)}{2}}\)

\(=\dfrac{6}{2\left(2+1\right)}+\dfrac{6}{3\left(3+1\right)}+...+\dfrac{6}{2022\cdot2023}\)

\(=\dfrac{6}{2\cdot3}+\dfrac{6}{3\cdot4}+...+\dfrac{6}{2022\cdot2023}\)

\(=6\left(\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{2022\cdot2023}\right)\)

\(=6\left(\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{2022}-\dfrac{1}{2023}\right)\)

\(=6\cdot\left(\dfrac{1}{2}-\dfrac{1}{2023}\right)=6\cdot\dfrac{2021}{4046}=\dfrac{12126}{4046}< 3\)

mà \(3< \dfrac{10}{3}\)

nên \(M< \dfrac{10}{3}\)

Bình luận (0)
H24
Xem chi tiết
NQ
15 tháng 9 2015 lúc 10:20

b) Đặt \(C=\frac{1}{4}+\frac{1}{4^2}+....+\frac{1}{4^{1000}}\)

\(\frac{1}{4}A=\frac{1}{4^2}+\frac{1}{4^3}+.......+\frac{1}{4^{1001}}\)

\(A-\frac{1}{4}A=\left(\frac{1}{4^2}-\frac{1}{4^2}\right)+\left(\frac{1}{4^3}-\frac{1}{4^3}\right)+.....+\frac{1}{4}-\frac{1}{4^{1001}}\)

\(\frac{3}{4}A=\frac{1}{4}-\frac{1}{4^{1001}}\)

Đến đây Đặt \(\frac{3}{4}B=\frac{1}{4}\)

Ta có: \(\frac{3}{4}A

Bình luận (0)
NQ
15 tháng 9 2015 lúc 10:27

À thì ra bạn học cùng trường với Nguyễn Âu Hồng Sơn 

Bình luận (0)
VA
Xem chi tiết
H24
11 tháng 10 2019 lúc 18:29

c, \(2^{300}\)và \(3^{200}\)

Ta có

\(2^{300}=8^{100}\)

\(3^{200}=9^{100}\)

Vì \(8^{100}< 9^{100}\Rightarrow2^{300}< 3^{200}\)

d, \(3^{300}\)và \(4^{200}\)

Ta có

\(3^{300}=27^{100}\)

\(4^{200}=16^{100}\)

Vì \(16^{100}< 27^{100}\Rightarrow3^{300}>4^{200}\)

a,b mik lười làm quá

Bình luận (0)
H24
11 tháng 10 2019 lúc 20:05

a, Ta có: S = 10 + 12 + 14 + ... + 2010

Các số hạng cách đều nhau 2 đơn vị.

Có số số hạng là: ( 2010 - 10 ) / 2 + 1 = 500 (số)

\(\Rightarrow\)S = ( 2010 +10 ) * 500 / 2

\(\Rightarrow\)S = 505000

Vậy S = 505000

b, Ta có: S = 1 + 2 + 3 + ... + 999

Các số hạng cách đều nhau 1 đơn vị.

Có số số hạng là: ( 999 - 1 ) / 1 +1 =  999 (số)

\(\Rightarrow\) S = ( 999 + 1 ) * 999 / 2 =  499500

Vậy S = 499500

c, 2300 và 3200

Ta có: 2300 = (23)100 = 8100

3200 = (32)100 = 9100

Vì 9 > 8 > 1 và 100 > 0

\(\Rightarrow\)9100 > 8100

Hay 2300 = 3200

Vậy 2300 = 3200

d, 3300 và 4200

Ta có: 3300 = (33)100 = 27100

4200 = (42)100 = 16100

Vì 27 > 16 > 1 và 100 > 0

\(\Rightarrow\)27100 > 16100

Hay 3300 > 4200

Vậy 3300 > 4200

Bình luận (0)
H24
11 tháng 10 2019 lúc 20:11

Xĩn lỗi nha! Câu c phải giải thế này:

2300 = (23)100 = 8100

3200 = (32)100 = 9100

Vì 1 < 8 < 9 và 100 > 0

\(\Rightarrow\)8100 < 9100

Hay 2300 < 3200

Vậy 2300 < 3200 

Bình luận (0)
H24
Xem chi tiết
vu
28 tháng 3 2018 lúc 13:21

1/100 hả e hay là 1/10

Bình luận (0)
H24
29 tháng 3 2018 lúc 17:16

Dạ 1/100

Bình luận (0)
vu
29 tháng 3 2018 lúc 20:21

theo đây mà làm giờ a bận chuẩn bị KT 1T r

link:  https://olm.vn/hoi-dap/question/148148.html

Bình luận (0)
TK
Xem chi tiết
TL
24 tháng 5 2015 lúc 16:32

\(A=\frac{1.3.4.5.6....999}{2.4.5.6...999.1000}=\frac{1.3}{2.1000}=\frac{3}{2000}

Bình luận (0)