Tìm x, y biết :
\(\frac{x-2y}{3x}=\frac{y+2}{6-3y}\)
1. Tìm \(x,\:y,\:z\:\) biết:
\(\frac{x}{3}=\frac{y}{4};\:\frac{y}{3}=\frac{z}{5}\) và
2x\(-3y+z=6\)
2. Tìm x,y biết:
5x=2y và x.y=40
Bài 1: Tìm x, y, z
\(\frac{x}{3}=\frac{y}{4}=>\frac{x}{3\times3}=\frac{y}{4\times3}=>\frac{x}{9}=\frac{y}{12}\)
\(\frac{y}{3}=\frac{z}{5}=>\frac{y}{3.4}=\frac{z}{5.4}=>\frac{y}{12}=\frac{z}{20}\)
=> \(\frac{x}{9}=\frac{y}{12}=\frac{z}{20}\)
- Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x}{9}=\frac{y}{12}=\frac{z}{20}\) -> \(\frac{2x}{2\times9}=\frac{3y}{3\times12}=\frac{z}{20}\) -> \(\frac{2x}{18}=\frac{3y}{36}=\frac{z}{20}\)
-> \(\frac{2x-3y+z}{18-36+20}=\frac{6}{2}=3\)
\(\frac{x}{9}=3\rightarrow x=27\)
\(\frac{y}{12}=3\rightarrow y=36\)
\(\frac{z}{20}=3\rightarrow z=60\)
Vậy x = 27 ; y = 36 ; z = 60
Bài 2 : Tìm x, y:
5x = 2y và x.y = 40
Vì 5x = 2y => \(\frac{x}{2}=\frac{y}{5}\)
Cách 1:
\(\frac{x}{2}=\frac{y}{5}\) và x.y = 40
Đặt \(\frac{x}{2}=\frac{y}{5}\) = k
=> x = 2.k ; y = 5.k
x.y = 40 -> 2k = 5k = 40
-> 10 . \(k^2\) = 40
-> \(k^2\) = 4 -> k = 2 hoặc k = -2
k = 4 ta có : \(\frac{x}{2}=\frac{y}{5}=2->x=4;y=10\)
k = -4 ta có : \(\frac{x}{2}=\frac{y}{5}=-2->x=-4;y=-10\)
Cách 2:
\(\frac{x}{2}=\frac{y}{5}->\frac{x.x}{2}=\frac{x.y}{5}->\frac{x^2}{2}=\frac{40}{5}=\frac{x^2}{2}=8\)
=> \(x^2\) = 8 . 2 = 16 -> x = 4 hoặc -4
x = 4 -> 4.y = 40 => y = 10
x = -4 -> (-4).y = 40 => y = -10
Vậy x = 4 hoặc -4
y = 10 hoặc -10
\(\frac{x}{3}=\frac{y}{4}\Rightarrow\frac{x}{9}=\frac{y}{12}\left(1\right)\\\frac{y}{3}=\frac{z}{5}\Rightarrow\frac{y}{12}=\frac{z}{15}\left(2\right)\)
Từ (1),(2) suy ra \(\frac{x}{9}=\frac{y}{12}=\frac{z}{15}\)
Áp dụng tính chất dãy tỉ số bằng nhau:
\(\frac{x}{9}=\frac{y}{12}=\frac{z}{15}=\frac{2x}{18}=\frac{-3y}{-36}=\frac{z}{15}=\frac{2x-3y+z}{18-\left(-36\right)+15}=\frac{6}{69}=\frac{2}{23}\)Suy ra x =\(\frac{2}{23}\cdot9=\frac{18}{23}\)
\(y=\frac{2}{23}\cdot12=\frac{24}{23}\\ z=\frac{2}{23}.15=\frac{30}{23}\)
\(1.\)
\(\frac{x}{3}=\frac{y}{4}\Rightarrow\frac{x}{9}=\frac{y}{12}\left(1\right)\)
\(\frac{y}{3}=\frac{z}{5}\Rightarrow\frac{y}{12}=\frac{z}{20}\) \(\left(2\right)\)
Từ (1) và (2) \(\Rightarrow\) \(\frac{x}{9}=\frac{y}{12}=\frac{z}{20}\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\frac{x}{9}=\frac{y}{12}=\frac{z}{20}=\frac{2x}{18}=\frac{3y}{36}=\frac{2x-3y+z}{18-36+20}=\frac{6}{2}=3\)
\(\frac{x}{9}=3\Rightarrow x=3.9=27\)
\(\frac{y}{12}=3\Rightarrow y=3.12=36\)
\(\frac{z}{20}=3\Rightarrow z=3.20=60\)
Vậy x = 27; y = 36 và z = 60
Tìm x, y, z biết:
a) 3x = 2y; 7x = 5z và x-y+z=32
b)\(\frac{2x}{3}\)= \(\frac{3y}{4}=\frac{4z}{5}\) và x+y+z= 49
c) \(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-4}{4}\)và 2x+ 3y- z= 50
\(a,\) \(3x=2y\Rightarrow\frac{x}{2}=\frac{y}{3}\Rightarrow\frac{x}{10}=\frac{y}{15}\left(1\right)\)
\(7x=5z\Rightarrow\frac{x}{5}=\frac{z}{7}\Rightarrow\frac{x}{10}=\frac{z}{14}\left(2\right)\)
Từ (1) và (2) ta có: \(\frac{x}{10}=\frac{y}{15}=\frac{z}{14}\) và \(x-y+z=32\)
Áp dụng t/c DTSBN ta có:
\(\frac{x}{10}=\frac{y}{15}=\frac{z}{14}=\frac{x-y+z}{10-15+14}=\frac{32}{9}\)
\(\Rightarrow\hept{\begin{cases}\frac{x}{10}=\frac{32}{9}\Rightarrow x=\frac{320}{9}\\\frac{y}{15}=\frac{32}{9}\Rightarrow y=\frac{160}{3}\\\frac{z}{14}=\frac{32}{9}\Rightarrow z=\frac{2560}{189}\end{cases}}\)
Vậy \(x=\frac{320}{9};y=\frac{160}{3};z=\frac{2560}{189}\)
các câu còn lại lm tương tự nhé
\(a,3x=2y=>\frac{x}{2}=\frac{y}{3}=>\frac{x}{10}=\frac{y}{15}\)(1)
\(7x=5z=>\frac{x}{5}=\frac{z}{7}=>\frac{x}{10}=\frac{z}{14}\)(2)
Từ 1 và 2 \(=>\frac{x}{10}=\frac{y}{15}=\frac{z}{14}\)
Áp dụng tc của dãy tỉ số bằng nhau :
\(\frac{x}{10}=\frac{y}{15}=\frac{z}{14}=\frac{x-y+z}{10-15+14}=\frac{32}{9}\)
\(=>\hept{\begin{cases}\frac{x}{10}=\frac{32}{9}=>9x=320=>x=\frac{320}{9}\\\frac{y}{15}=\frac{32}{9}=>9y=480=>y=\frac{480}{9}\\\frac{z}{14}=\frac{32}{9}=>9z=448=>z=\frac{448}{9}\end{cases}}\)
Vậy ,,,
1. Tìm các số hữu tỉ x,y,z biết:
a) \(2x=3y=7z\) và x+y-z= 58
b) \(2x=3y=5z\)và x+y-z= -190
c) \(3x=2y,7y=5z\)và x-y=z= 32
d) \(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}\)và x-2y=3z= -10
e) \(x(x+y+z)=-12;y(y+z+x)=18;z(z+x+y)=30\)
1. Tìm các số hữu tỉ x,y,z biết:
a) \(2x=3y=7z\)và x+y-z=58
b) \(2x=3y=5z\)và x+y-z=-190
c) \(3x=2y,7y=5z\)và x-y+z=32
d) \(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}\)và x-2y+3z= -10
e) \(x(x+y+z)=-12;y(y+z+x)=18;z(z+x+y)=30\)
Tìm x,y biết: \(\frac{5x-4}{9}=\frac{2y+16}{6}=\frac{5x-2y-20}{\frac{3}{8}x}\)
Tìm x,y,z biết
\(\frac{3x}{8}\)\(=\frac{3y}{64}\)\(=\frac{3z}{216}\)và 2x2+2y2-z2=1
giup mk vs nhé
1) Tìm \(n\in N\) để \(n^2+n+6\) là số chính phương
2) Tìm x,y,z biết :
a) \(\left|x\right|+\left|-x\right|=3-x\)
b) \(\frac{x}{6}-\frac{1}{y}=\frac{1}{2}\)
c) 2x = 3y ; 5x = 7z và \(3x-7y+5z=30\)
giúp e vs các a cj soyeon_Tiểubàng giải
Phương An
Hoàng Lê Bảo Ngọc
Silver bullet
Nguyễn Huy Tú
Nguyễn Như Nam
Hoàng Tuấn Đăng
Nguyễn Trần Thành Đạt
Nguyễn Huy Thắng
Võ Đông Anh Tuấn
1)tìm x;y:
a)\(\frac{x-y}{x+2y}=\frac{3}{4}\) b)\(\frac{3x-7}{8}=\frac{5}{2}\)
2)
tìm x;y;z biết : \(\frac{x}{3}=\frac{y}{2}=\frac{z}{6}\)và\(5.x^2+y^2-z^2=117\)
Ta có:
\(\frac{x-y}{x+2y}=\frac{3}{4}\)
\(\Rightarrow\left(x-y\right).4=\left(x+2y\right).3\)
\(\Rightarrow4x-4y=3x+6y\)
\(\Rightarrow4x=3x+10y\)
\(\Rightarrow x=10y\)
Thay \(x=10y\) vào \(\frac{x-y}{x+2y}=\frac{3}{4}\), ta có:
\(\frac{10y-y}{10y+2y}=\frac{3}{4}\)
\(\Rightarrow\frac{9y}{12y}=\frac{3}{4}\)
êk? thôi chắc chịu, pai pai, cứ để hiện lên cho oách
2, Đặt \(\frac{x}{3}=\frac{y}{2}=\frac{z}{6}=a\)
\(\Rightarrow x=3a;y=2a;z=6a\)
\(5x^2+y^2-z^2=117\Rightarrow5.\left(3a\right)^2+\left(2a\right)^2-\left(6a\right)^2=117\)
\(\Rightarrow13a^2=117\Rightarrow a^2=9\)\(\Rightarrow a=3\) hoặc \(a=-3\)
+ Với \(a=3\) thì \(x=3.3=9;y=3.2=6;z=3.6=18\)
+Với \(a=-3\) thì \(x=-9;y=-6;z=-18\)
cho x+y+z=6;x,y,z>0.Min\(G=\frac{x^2}{x+2y+3z}+\frac{y^2}{y+2z+3x}+\frac{z^2}{z+2x+3y}\)
Áp dụng trực tiếp bất đẳng thức Cauchy-Schwarz dạng Engel:
\(VT\ge\frac{\left(x+y+z\right)^2}{\left(x+y+z\right)+2\left(x+y+z\right)+3\left(x+y+z\right)}=1\)
Dấu bằng xảy ra khi \(x=y=z=2\)
Áp dụng BĐT AM - GM cho 2 số dương, ta được: \(\frac{x^2}{x+2y+3z}+\frac{1}{36}\left(x+2y+3z\right)\ge2\sqrt{\frac{x^2}{x+2y+3z}.\frac{1}{36}\left(x+2y+3z\right)}=\frac{1}{3}x\Rightarrow\frac{x^2}{x+2y+3z}\ge\frac{11}{36}x-\frac{1}{18}y-\frac{1}{12}z\)Tương tự, ta có: \(\frac{y^2}{y+2z+3x}\ge\frac{11}{36}y-\frac{1}{18}z-\frac{1}{12}x\); \(\frac{z^2}{z+2x+3y}\ge\frac{11}{36}z-\frac{1}{18}x-\frac{1}{12}y\)
Cộng theo vế của 3 bất đẳng thức trên, ta được: \(G=\frac{x^2}{x+2y+3z}+\frac{y^2}{y+2z+3x}+\frac{z^2}{z+2x+3y}\ge\frac{1}{6}\left(x+y+z\right)=1\)
Đẳng thức xảy ra khi x = y = z = 2