Cho A = 3 + 3^2 + 3^3 + ... + 3^120. Chứng tỏ:
a, A chia hết cho 13; 40.
b, A không chia hết cho 9.
c, 2A + 3 không phải là số chính phương
Chứng tỏ A chia hết cho các số 4, 13, 82.
A=3+3^2 + 3^3 + .... + 3^120
A=3(1+3)+3^3(1+3)+...+3^119(1+3)
=4(3+3^3+...+3^119) chia hết cho 4
A=3(1+3+3^2)+...+3^118(1+3+3^2)
=13(3+...+3^118) chia hết cho 13
A = 3 + 3^2+ 3^3 + 3^3 + ... + 3^132
a, chứng tỏ A chia hết cho 40
b, chứng tỏ A chia hết cho 39
c, chứng tỏ A chia hết cho 120
a: A=3(1+3+3^2+3^3)+...+3^129(1+3+3^2+3^3)
=40(3+...+3^129) chia hết cho 40
b: A=(3+3^2+3^3)+....+3^129(3+3^2+3^3)
=39(1+...+3^129) chia hết cho 39
c: A chia hết cho 40
A chia hết cho 3
=>A chia hết cho BCNN(40;3)=120
A = 3 + 3^2 + 3^3 + 3^4 + ... + 3^120
a) Tính A
b) Chứng tỏ rằng 2A + 3 là lũy thừa của 3
c) Chứng tỏ rằng A chia hết cho 4; 13; 52
d) Tìm chữ số tận cùng của A
a)
\(A=3+3^2+3^3+3^4+...+3^{120}\)
\(\Rightarrow3A=3.\left(3+3^2+3^3+3^4+...+3^{120}\right)\)
\(\Rightarrow3A=3^2+3^3+3^4+3^5+...+3^{121}\)
\(\Rightarrow3A-A=\left(3^2+3^3+3^4+3^5+...+3^{121}\right)-\left(3+3^2+3^3+3^4+...+3^{120}\right)\)
\(\Rightarrow2A=3^{121}-3\)
\(\Rightarrow A=\frac{3^{121}-3}{2}\)
b)
\(2A+3\)
\(=3^{121}-3+3\)
\(=3^{121}\)
Mà 3121 là lũy thừa của 3
\(\Rightarrow\) 2A + 3 là lũy thừa của 3.
cho A = 1+3+3^2 + 3^3 + .....+ 3^11 chứng tỏ a chia hết cho 14
cho b = 3^1 + 3^3 + 3^4 +.... + 3^1991 chứng tỏ rằng B chia hết cho 13 , 41
a)A=2+2^2+2^3+2^4+...+2^60 chứng tỏ A chia hết cho 3, 7 ,15
b)B=3+3^2+3^3+3^4+...+3^1991 chứng tỏ B chia hết cho 13 và 41
Cho A = 3+32+33+...+318
a) Chứng tỏ A chia hết cho 4 , cho 13
b) Chứng tỏ A chia hết cho 364
a)Ta có:A=3+32+33+...+318
=(3+32)+(33+34)+...+(317+318)
=3(1+3)+33(1+3)+...+317(1+3)
=3.4+33.4+...+317.4
Vì 4\(⋮\)4 nên 3.4+33.4+...+317.4\(⋮\)4
hay A\(⋮\)4
Ta có:A=3+32+33+...+318
=(3+32+33)+(34+35+36)+...+(316+317+318)
=3(1+3+32)+34(1+3+32)+...+316(1+3+32)
=3.13+34.13+...+316.13
Vì 13\(⋮\)13 nên 3.13+34.13+...+316.13\(⋮\)13
hay A\(⋮\)13
Vậy A chia hết cho 4, 13.
A=3+32+33+...+318
A=(3+32)+(33+34)+...+(317+318)
A=3(1+3)+33(1+3)+...+317(1+3)
A=3x4+33x4+...+317x4
A=4x(1+33+...+317) chia hết cho 4
a) A = 3 + 32 + 33 + ... + 318 Chia hết cho 4
= ( 3 + 32 ) + ( 33 + 34 ) + ... + ( 317 + 318 )
= 12 . 1 + 32 . ( 3 + 32 ) + ... + 316 . ( 3 + 32 )
= 1 . 12 + 32 . 12 + ... + 316 . 12
= 12 . ( 1 + 32 + ... + 316 )
= 4 . 3 . ( 1 + 32 + ... + 316 ) Chia hết cho 4
A = 3 + 32 + 33 + ... + 318 Chia hết cho 13
= ( 3 + 32 + 33 ) + ( 34 + 35 + 36 ) + ... + ( 316 + 317 + 318 )
= 1 . 39 + 33 . ( 3 + 32 + 33 ) + ... + 315 . ( 3 + 32 + 33 )
= 1 . 39 + 33 . 39 + ... + 315 .
= 39 . ( 1 + 33 + ... + 315 )
= 3 . 13 . ( 1 + 33 + ... + 315 ) Chia hết cho 13
b) A = 3 + 32 + ... + 318 Chia hết cho 364
= ( 3 + 32 + 33 + 34 + 35 + 36 ) + ( 37 + 38 + 39 + 310 + 311 + 312 ) + ( 313 + 314 + 315 + 316 + 317 + 318 )
= 1 . 1092 + 36 . ( 3 + 32 + 33 + 34 + 35 + 36 ) + 312 . ( 3 + 32 + 33 + 34 + 35 + 36 )
= 1 . 1092 + 36 . 1092 + 312 . 1092
= 1092 . ( 1 + 36 + 312 )
= 364 . 3 . ( 1 + 36 + 312 ) Chia hết cho 364
k mình nha
chứng minh
A = 1+3+3^2+3^3+...3^11 chứng tỏ rằng chia hết cho 13
B = 3+4+2^2+2^3+....+2^30 chứng tỏ rằng chia hết cho 11
C = 3^1000-1 chứng tỏ rằng chia hết cho 4
TA CÓ:
A=30+3+32+33+........+311
(30+3+32+33)+....+(38+39+310+311)
3(0+1+3+32)+......+38(0+1+3+32)
3.13+....+38.13 cHIA HẾT CHO 13 NÊN A CHIA HẾT CHO 13( đpcm)
a) Cho A = 2+2^2+2^3+...+2^180. Chứng tỏ rằng A chia hết cho 3,cho 7, cho 15
b) Cho B = 3+3^3+3^5+...+3^1991. Chứng tỏ rằng B chia hết cho 13,cho 41
câu hỏi tương tự
cứ di chuột vào câu hỏi ế
cho A = 1 + 3 + 3^2 + 3^3 + ..... + 3^11
chứng tỏ rằng a chia hết cho 14
cho B = 3^! + 3^3 + 3^5 + ...... +3^1991
chứng tỏ rằng B chia hết cho 13 , cho 41