Phan tich dt thanh nhan tu:
-12x5 -12x³y -3xy²+36x⁴+16x²y+9y²
phan tich da thuc thanh nhan tu bang pp dung hang dang thuc:
a) 16x^2 - (x^2 + 4)^2
b) 27x^3 - 54x^2 + 36x - 8
c) (x+y)^3 - (x-y)^3
help me
a) 16x2-(x2+4)2= (4x)2-(x2+4)2
= (4x-x2-4)(4x+x2+4)
\(\text{b) 27x^3-54x^2+36x-8=[(3x)^3-3.(3x)^2.2+3.3x.2^2-2^3}]\)
= (3x-2)3
\(\text{c) (x+y)^3 - (x-y)^3= (x+y-x+y)[(x+y)^2+(x+y)(x-y)+(x-y)^2]}\)
=2y(x2+2xy+y2+x2-y2+x2-2xy+y2)
= 2y(3x2+y2)
phan tich thanh nhan tu x^3-x
16x^3-12x^2+#x-7
a) = a( a^2-1 )
= a(a-1)(a+1)
b) =16x^3- 16x^2 +4x^2-4x+7x -7
=16x^2(x-1) +4x(x-1) +7(x-1)
=(x-1)(16x^2 +4x+7)
bạn có thể viết rõ ràng hơn đc k ? mình k hiểu đề bài cho lắm!!!
a) a^3-a
b)16x^3-12x^2+3x-7
phân tích thành nhân tử
phan tich da thuc thanh nhan tu : x^3 + 3xy+y^3 -1
phan tich cac da thuc sau thanh nhan tu:
(y^2+Y)^2 -9y^2 - 9y+20
(X+3)*(x+6)*(x+9)*(x+12)+81
dat y^2+y=z cho gon
\(z^2-9z+20=z^2-4z-5z+20=z\left(z-4\right)-5\left(z-4\right)=\left(z-4\right)\left(z-5\right)\)
\(thaylai:\left(y^2+y-4\right)\left(y^2+y-5\right)\)
phan tich da thuc thanh nhan tu
6x2 - 3xy + x + y -1
Phan tich da thuc thanh nhan tu:
x^3 - x + 3x^2y + 3xy^2 + y^3 - y
x^2 + 5x - 6
x^3 - x + 3x^2y + 3xy^2 + y^3 - y
=x3+y3+3x2y+3xy2-x-y
=(x+y)(x2-xy+y2)+3xy(x+y)-(x+y)
=(x+y)(x2-xy+y2+3xy-1)
=(x+y)(x2+2xy+y2-1)
=(x+y)[(x+y)2-1]
=(x+y)(x+y-1)(x+y+1)
x^2 + 5x - 6
=x2-x+6x-6
=x.(x-1)+6.(x-1)
=(x-1)(x+6)
4x^2-36x+56 phan tich da thuc thanh nhan tu
4x2 - 36x + 56
= 4x2 - 28x - 8x + 56
= ( 4x2 - 28x ) - ( 8x - 56 )
= 4x( x - 7 ) - 8( x - 7 )
= ( x - 7 )( 4x - 8 )
= 4( x - 7 )( x - 2 )
phan tich da thuc thanh nhan tu
X3_X+3X2Y+3XY2+Y3-Y
x3-x+3x2y+3xy2+y3-y
=x2(x-1)+3(x2y+xy2)+y2(y-1)
=x2(x-1)+3(x2.y+y2.x)+y2(y-1)
=x2(x-1)+3{[x(x+1)+y(y+1)]}+y2(y-1)
=x2(x-1)+3.x(x+1)+3.y(y+1)+y2(y-1)
=x2(x-1)+2x2+3.x(x+1)+3.y(y+1)+y2(y-1)+2y2-2x2-2y2
=x2(x+1)+3.x(x+1)+3.y(y+1)+y2(y+1)-2x2-2y2
=(x2+3)(x+1)+(y2+3)(y+1)-2(x2+y2)
ta có : (x*3+3x*2y+3xy*2+y*3)-(x+y)
=(x+y)*3-(x+y)
=(x+y)((X+Y)*2-1)
(x+y)(x+y+1)(x+Y-1)
\(x^3-x+3x^2y+3xy^2+y^3-y=\left(x^3+3x^2y+3xy^2+y^3\right)-\left(x+y\right)\)
=\(\left(x+y\right)^3-\left(x+y\right)=\left(x+y\right)\cdot\left[\left(x+y\right)^2-1\right]=\left(x+y\right)\cdot\left(x+y+1\right)\cdot\left(x+y-1\right)\)
phan tich da thuc sau thanh nhan tu :
\(49\left(y-4\right)^2-9y^2-36y-36\)
\(49.\left(y-4\right)^2-9y^2-36y-36\)
\(=7^2\left(y-4\right)^2-\left(9y^2+36y+36\right)\)
\(=\left(7y-28\right)^2-\left(3y+6\right)^2\)
\(=\left(7y-28+3y+6\right).\left(7y-28-3y-6\right)\)
\(=\left(10y-22\right).\left(4y-34\right)\)
\(=4.\left(5y-11\right).\left(2y-17\right)\)
\(49\left(y-4\right)^2-9y^2-36y-36\)
\(=\) \(4\left(2y-17\right)\left(5y-11\right)\)